
- 1 

NASA Contractor Report 3089 

‘; 
< ~,AsA 1 - I 
1 CR 
1 3089 
.i c.1 

Investigation of the Multiple Model 
Adaptive Control (MMAC) Method 

for Flight Control Systems 

M . Athans, Y. Baram, D. Castanon, K. P. Dunn, 
C. S. Green, W. H. Lee, N. R. Sandell, Jr., 
and A. S. Willsky 

GRANT NSG- 10 18 
MAY 1979 



4 TECH LIBRARY KAFB, NM 

NASA Contractor Report 3089 

Investigation of the Multiple Model 
Adaptive Control (MMAC) Method 
for F light Control Systems 

M . Athans, Y. Baram, D. Castanon, K. P. Dunn, 
C. S. Green, W. H. Lee, N. R. Sandell, Jr., 
and A. S. Willsky 
Massachusetts Institute of Technology 
Cambridge, Massachusetts 

Prepared for 
Langley Research Center 
under Grant NSG-1018 

National Aeronautics 
and Space Administration 

Scientific and Technical 
Information Office 

1979 



.i’ : 

: 



-. 

TABLE OF CONTENTS 

CHAPTER PAGE 

1. INTRODUCTION, CONCLUSIONS, AND RECOMMENDATIONS FOR FUTURE RESEARCH 

1.1' Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 

1.2 Sensors ........................... 

1.3 Models ............................ 

1.4 Control Philosophy ...................... 

1.5 Brief Historical Perspectives ... ., ............. 

1.6 Conclusions ......................... 

1.6.1 Identification ........... I ........ 

1.6.2 Adaptive Control ................... 

1.7 Recommendations for Future Research .............. 

1.7.1 Identification Performance Using Real Data . . . . . .  

1.7.2 Improvements in Kalman Filter Design . . . . . . . 

1.7.3 Control System Design . . . . . . . . . . . . . . . 

2. AN OVERVIEW OF THE MULTIPLE MODEL ADAPTIVE CONTROL METHOD . . . 

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 

2.2 Basic Idea of the Multiple Model Identification Algorithm 

2.3 Adaptive Control System Design by the MMAC Method . . . . 

2.4 Overview of Remaining Chapters . . . . . . . . . . . . . . 

3. LINEARIZED AIRCRAFT EQUATIONS . . . . . . . . . . . . . . . . . 

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 

3.2 Reference Flight Conditions . ,. . . . . . . . . . . . . '. 

3.3 Longitudinal Systems Equations . . . . . . . . . . . . . . 

3.4' Wind Disturbances in the Longitudinal System . . . . . . . 

3.5 Sensor Measurements in the Longitudinal Dynamics . . l . l 

3.6 Reduced Dynamics for the Longitudinal System . . . . l l l 

. . 

. . 

. . 

. . 

. . 

. . 

. . 

. . 

. . 

. . 

. . 

. . 

. . 

. . 

3.7 Linear Models of the Lateral Dynamics . . . . . . . l l l l l 

3.8 Sensor Measurements in the Lateral System . . . t . l l . l l 

iii. 

l-l 

l-l 

l-3 

l-6 

l-7 

l-,10 

l-11 

l-11 

1-12 

1-13 

1-13 

1-14 

1-16 

2-l 

2-l 

2-l 

2-9 

2-14 

3-l 

3-l 

3-l 

3-l 

3-5 

3-9 

3-12 

3-14 

3-17 



CHAPTER 

.- 
.PAGE 

3.9 Concluding Remarks .' . . .' .j . . . . . . . . . . . . . .' ; . 3-17 

4. THE MULTIPLE MODEL ADAPTIVE 'CONTROL (MMAC) ALGORITHM: TtiORY... . 4-1 

... 

4.1 Introduction .......................... 4-l 

4.2 Problem Formulation ...... : .................. 4-l 

4.3 Identification and Estimation ............... 4-3 

4.4 Discussion of Identification ................ 4-11 

5. 

6. 

7. 

4.5 The MMAC Algorithm: Control Approach ........... 

4.6 Modification of the MMAC Algorithm .............. 

LONGITUDINAL AXIS CONTROL AUGMENTATION SYSTEM .......... 

5.1 Introduction ........................ 

5.2 Longitudinal Axis Linearized Model ............. 

5.3 Reduced Model Longitudinal Design ............. 

5.4 C*-Design Using Reduced Ordei Dynamics ........... 

5.5 Discrete-time LQG Design .................... 

5.6 Longitudinal Pilot Command System ........... ; . 

5.7 Modifications of Controlled Design .......... i .. 

5.8 Performance of the Longitudinal Control System ....... 

LATERAL AXIS CONTROL AUGMENTATION SYSTEM ............ 

6.1 Introduction ........................ 

6.2 Choice of Control Variables ................ 

6.3 Cost Function Development ................. 

6.4 Simulation Results ..................... 

WC EXPERIJfENT' ........................ 

7.1 Introductj.on ........................ 

7.2 MMAC Control Systems .................... 

7.3 Stability Tables for Mismatched Controllers ........ 

7.4 Simulations at Sea Level .................. 

iv 

4-15 

4-16 

5-l 

:-5-l 

5-l 

5-4 

5-6 

5-11 

5-11 

5-17 

5-20 

'6-l 

6-l 

6-l 

.6-6 

6-12 

7-l 

7-l 

7-l 

7-6 

7-10 



PAGE - 

7.5 Simulations at 20,000 Feet (6096 meters) . . . . . . . . .,.. 7-15 

7.6 Simulations at 40,000 Feet (12192 meters) . . . . . . . . . 7-64 
. . ; 

7.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 7-66 

8. PILOT SIMULATIONEXPEFUMENTS . . . . . . . . . . . . . . . . . . 8-l 

8.1 Introduction ....................... 8-l 

8.2 The MMAC Model-Scheduling Algorithm ............ 8-l 

8.3 Identification Experiments ................. 8-5 

8.4 Tracking Experiments .................... 8-29 

8.5 Discussion ......................... 8-30 

9. CONCLUSIONS ........................... g-l 

9.1 Introduction ........................ g-1 

9.2 TheMMACAlgorithmandtheF-8 ............... 9-2 

9.3 Reasons for MMAC Deficiencies ............... 9-3 

9.4 HOW should the MMAC algorithm be evaluated? .... d ... 9-4 

9.5 The Lateral MMAC System .................. 9-6 

9.6 The Longitudinal MMAC System ................ 9-8 

9.7 General Conclusions .................... 9-11 

10. REFERENCES ............................ 10-l 

APPENDIXA ............................. A-l 

APPENDIXB ............................. B-l 

APPENDIXC ............................. C-l 

APPENDIXD ............................. D-l 

APPENDIXE ............................. E-l 

APPENDIXF ............................. F-l 

APPENDIXG ............................. G-l 

APPENDIXH ............................. H-l 

V 



CHAPTER PAGE 

APPENDIX1 . i.......................... I-l 

APPENDIXJ . . . . . . . . . . :. . . . . . . . . .i . . . . . . J-1' 

APPENDIXK L........................... K-l 

APPENDIXL ............................ L-l 

APPENDIXM ............................. M-l 

. 

Vi 



LIST OF FIGURES 
i 

FIGUBE . ' PAGE 

2.2.1 The structure of the system to be controlled: In aircraft : 
applications the control inputs are the commanded inputs 
to the surface actuators: Disturbances are due to wind' -. 

turbulence. The vector z(t) denotes noisy sensor measure- 
ments. . . . . . . . . ,l;i . . . . . . . . . . . . ...' 2-2 

2.2.2 General structure of'a Kalmau kilter. The weighted residual--' 
square (WRS) signal m(t) is generated from the residual 
vector, r(t), of the Kalman filter by the quadratic form 
m(t) = LT(t)g-lr(t) where S is the covariance matrix of the 
residuals, m(t)>n a scalar quantity. . . . . . . . . . . ,+ . 2-4 

2.2.3 Structure of a bank of N Kalman filters (see Fig. 2.2.2) 
that simultaneously generate state estimates, g?(t), and 
the WBS scalar signals mi(t) that can be used for identi- 
fication. . . . . . . . . . . . . . . . . . . . . . . . . . 

The general structure of the dynamic compensator or stability 
augmentation system (SAS) when the true aircraft dynamics 
are known so that matched Kalman filters and control gains 
can be computed. . . . . . . . . . . . . . . . . . . . . ,. 

Complete structure of MMAC algorithm. Each SAS box is 
described by the functional diagram of Fig. 2.3.1 and gen- 
erates the "optimal" control, u?(t), for a given flight 
condition. The actual controly'u(t), applied to the aircraft 
is the weighted probabilistic average. . . . . . . . . l l 

2-8 

2.3.1 

2-10 

2.3.2 

3.2.1 

3.3.1 

Location of selected Flight Conditions of F-8C. l . l . l . 

Actuator Model . . . . . . . . . . . . . . . . . . . . . . . . 

2-12 

3-2 

3-b 

3.4.1 Normalized Wind Disturbance Generated by White Noise Input E(t) 3-8 

4.3.2 Multiple Model Identification and Estimation. . . . . . . . 4-9 

4.3.3 Block Diagram of the Generation of WBS mi(t) from each Kalman 
Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10 

4.5.1 

4.6.1 

4.6.2 

MMAC Identification and Control Scheme. . . . . . . . . . . 4-17 

Aircraft responses to 6Ocl, 2O@ initial gusts, no turbulence, 
altitude 6096 meters, speed .6 Mach, using combined identifi- 
cation . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-23 

Aircraft responses to 6Ocl, 2OB initial gusts, 4.57 m/set rms 
turbulence, altitude 6096 meters, speed .6 Mach, displaying 
identification probabilities . . . . . . . . . . . . . . . . 4-24 

vii 

i 



FIGURE PAGE 

5.3.1 Closed-loop complex poles for different pitch rate'pe'nalties 

5.4.1 Complex Eigenvalues of Closed-loop Longitudinal System . . . 

5.6.1 Deterministic Longitudinal Pilot Command System '. . . . . . 

5.6.2 Stochastic Longitudinal Pilot Command System . l . . . . . 

5.7.1 

5.7.2 

5.8.1 

Structure of P-I Controller . . . . . . . . . . . . . . . . 

High-pass Filtering of Trim Effects in MMAC . . . . . . . . 

Longitudinal system responses to initial 6O~l perturbation, 
no turbulence, altitude 304.8 meters, speed .53 Mach 

(a) open loop response 
(b) closed loop responses . . . . . . . . . . . . . . . . . 5-23 

5.8.2 

5.8.3 

5.8.4 

5.8.5 

5.8.6 

5.8.7 

Longitudinal system responses to initial 6Oa perturbation, 
no turbulence, altitude 304.8 meters, speed -86 Mach 

(a) open loop responses 
(b) closed loop responses . . . . . . . . . . . . . . . . . 5-24 

Longitudinal system responses to initial 6Oct perturbation, 
no turbulence, altitude 6096 meters, speed .6 Mach 

(a) open loop responses 
(b) closed loop responses . . . . . . . . . . . . . . . . . 5-25 

Longitudinal system responses to initial 6Oa perturbation, 
no turbulence, altitude 6096 meters, speed .9 Mach . . . . . 

Longitudinal system responses to initial 6Oa perturbation, 
no turbulence, altitude 12192 meters, speed .9 Mach 

5-26 

(a) open loop responses 
(b) closed loop responses . . . . . . . . . . . . . . . . . 5-27 

Longitudinal system responses to initial 6Oa perturbation, 
no turbulence, altitude 12192 meters, speed 1.4 Mach 

(a) open loop responses 
(b) closed loop responses . . - . . . . . . . . . . - . - . 

Longitudinal system responses to initial 6Oa perturbation, 
turbulence level 4.57 m/set rms, altitude 304.8 meters, 
speed .53 Mach 

(a) open loop responses 
(b) closed loop responses . . . . . . . . . . . . . . . . . 5-29 

5-7 

5-10 

5-13 

5-14 

5-19 

5-21 

5-28 

viii 



FIGURES' 

‘i’ 5.8.8 

5.8.9 

5.8.10 

5.8.11 

5.8.12 

5.8.13 

5.8.14 

5.8.15 

Longitudinal system responses to 
turbulence level 4.57 m/set rms, 
speed .86 Mach 

(a) open loop responses 
(b) closed loop responses . . . 

Longitudinal system responses to 
turbulence level 4.57 m/set rms, 
speed .6 Mach 

(a) open loop responses 
(b) closed loop responses . . . 

Longitudinal system responses to 
turbulence level 4.57 m/set rms, 
speed .9 Mach 

(a) open loop responses 
(b) closed loop responses . . . 

Longitudinal system responses to 
turbulence level 4.57 m/set rms, 
speed .9 Mach 

(a) open loop responses 
(b) closed loop responses . . . 

Longitudinal system responses to 
turbulence level 4.57 m/set rms, 
speed 1.4 Mach 

(a) open loop responses 
(b) closed loop responses - . . 

Longitudinal system responses to elevator doublet command, 

initial 6Oa perturbation, 
altitude 304.8 meters, 

.‘. .  .  .  .  .  .  .  .  .  .  .  

initial 6Ocl perturbation, 
altitude 6096 meters, 

. . . . . . . . . . . . . 

initial 6O~r perturbation, 
altitude 6096 meters, 

. . . . . . . . . . . . . 

initial 6Oo perturbation, 
altitude 12192 meters, 

. . . . . . . . . . . . . 

initial 6Ocx perturbation, 
altitude 12192 meters, 

. . . . . . . . . . . . . 

no turbulence, altitude 304.8 meters 

(a) closed loop responses, speed .53 Mach 
(b) closed loop responses, speed -86 Mach - - . . . . . . 

Longitudinal system responses to elevator doublet command, 
no turbulence, altitude 6096 meters 

(a) closed loop responses, speed .6 Mach 
(b) closed loop responses, speed .9 Mach . . . . . . . . . 

Longitudinal system responses to elevator doublet command, 
no turbulence, altitude 12192 meters 

(a) closed loop responses, speed .6 Mach 
(b) closed loop responses, speed 1.4 Mach . . . . . . . . 

ix 

PAGE 

. 

t 5-30 

, 5-31 

. 5-32 

. 5-33 

. 5-34 

. 5-35 

- 5-36 

- 5-37 



6.2.1 

6.3.1 

6.4.1 

6.4.2 

6.4.3 

6.4.4 

6.4.5 

6.4.6 

6.4.7 

6.4.8 

Structure of Lateral Controller for each Model . . . . . . . 
1, 

Complex Eigenvalues of Closed-loop Lateral Control System 

PAGE -- 

6-4 

6-7 

Lateral system responses to initial 2OB perturbation, no 
turbulence, altitude 304.8 meters, .53 Mach 

(a) open loop re,sponses 
(b) closed loop responses Y . . . ., . . . . _. . . . . . . . 

Lateral system responses to initial 2OB perturbation, no 
turbulence, altitude 304.8 meters, speed -86 Mach 

(a) open loop responses 
(b) closed loop responses .,. . . . . . . . . . . . . . . . 

Lateral system responses to initial 2OB perturbation, no 
turbulence, altitude 6096 meters, speed .6 Mach 

(a) open loop responses 

6-15 

6-16 

(b) closed loop responses 1 . . . . . : . . . . . . . . . . 6-17 

Lateral system responses to initial 2O$ perturbation, no' 
turbulence, altitude 6096 meters, speed .9 Mach 

(a) open loop responses 
(b) closed loop responses . . . . . . . . ., . . . . . . . . 6-18 

Lateral system responses to initial 2O$ perturbation, no 
turbulence, altitude 12192 meters, speed .9 Mach 

(a) open loop responses 
(b) closed loop responses . . . . . . . . . . . . . . . . . 6-19 

Lateral system responses to initial 2Ofi perturbation, no 
turbulence, altitude 12192 meters, speed 1.4 Mach 

(a) open loop responses 
(b) closed loop responses . . . . . . . . . . . . . . . . . . 

Lateral system responses to initial 2OB perturbation, 
turbulence level 4.57 m,/sec rms, altitude 304.8 meters, 
speed -53 Mach 

6-20 

(a) open loop responses 
(b) closed loop responses . . . . . . . . . . . . . . . . . 

Lateral system responses to initial 2OB perturbation, 
turbulence level 4.57 m/set rms, altitude 304.8 meters, 
speed -86 Mach 

6-21 

(a) open loop responses 
(b) closed loop responses . . . . . . . . . . . . . . . . . 6-22 

X 



FIGURES 
j 

6.4.8 Lateral system responses to initial 2OB perturbation, 
turbulence level 4.57 m/set rms , altitude 304.8 meters, 
speed .86 Mach 

' 
(a) open loop responses . 
(b) closed loop responses . . . . . . . .’ . . . . . . . . . 6-22 

6.4.9 Lateral system responses to initial 2OB perturbation, . 
'turbulence level 4.57 m/set rms, altitude 6096 meters, 

speed .6 Mach 

(a) open loop responses 
(b) closed loop responses l l l l l . . l l . . . . . . . . 6-23 

6.4.10 . Lateral system responses to initial 2O$ perturbation, 
turbulence level 4.57 m/set rms, altitude 6096 meters, 
speed .9 Mach 

. 
(a) open loop responses 
(b) closed loop responses l . s . . l l . . . . . . . . . . 6-24 

6.4.11 Lateral system responses to initial 2O(3 perturbation, 
turbulence level 4.57 m/set nns, altitude 12192 meters, 
speed .9 Mach 

(a) open loop responses 
(b) closed loop responses l . l . l '. . l l l .' . . . . - . 6-25 

6.4.12 Lateral system responses to initial 2O$ perturbation, 
turbulence level 4.57 m/set rms , -altitude 12192 meters, 
speed 1.4 Mach 

(a) open loop responses 
(b) closed loop responses . . . . . . . . . . . . . . . . . 6-26 

6.4.13 Lateral system responses to aileron doublet command, no 
turbulence, altitude 304.8 meters, speed .53 Mach 

(a) closed loop responses 
(b) model responses used in model-following scheme. . . . . 6-27 

6.4.14 Lateral system responses to aileron doublet command, no 
turbulence, altitude 304.8 meters, speed .86 Mach 

(a) closed loop responses 
(b) model responses used in model-following scheme. . . . . 6-28 

6.4.15 Lateral system responses to aileron doublet 'command, no 
turbulence, altitude 6096 meters, speed .6 Mach 

(a) closed loop responses 
(b) model responses used in model-following scheme. . . . . 6-29 

Xl 



FIGURES 

6.4.16 

6.4.17 

6.4.18 

7.2.1 

7.2.2 

7.2.3 

7.4.1 

7.4.2 

7.4.3 

7.4.4 

7.4.5 

Lateral system responses to aileron doublet command, no 
turbulence, altitude 6096 meters, speed .9 Mach 

(a) closed loop responses 
(b) model responses used in model-following scheme l l . l l 

Lateral system responses to aileron doublet command, no 
turbulence, altitude 12192 meters, speed .9 Mach 

(a) closed loop responses 
(b) model responses used in model-following scheme . . l l l 

Lateral system responses to aileron doublet command, no 
turbulence, altitude 12192 meters, speed 1.4 Mach 

(a) closed loop responses 
(b) model responses used in model-following scheme * * s s 

MMAC control system for longitudinal axis . . . . l . . . . 

MMAC Control System for Lateral Axis l . . . . . . . l * l . 

Doublet command used in aircraft simulations . . * * . . . l 

Longitudinal responses to 6Oa, 2OB initial conditions, 
no turbulence, altitude 304.8 meters, speed .7 Mach 

(a) Perfect identification responses 
(b) WC responses, Models 6,7,8,10 
(c) MMAC responses, Models 6,8,18,19 * * * * * * * * * * * 

Lateral responses to ~OCY., 2O@ initial conditions, no turb- 
ulence, altitude 304.8 meters, speed .7 Mach 

(a) Perfect identification responses 
(b) MMAC responses, Models 6,7,8,10 
(c) MMAC responses, Models 6,8,18,19 . . . . . . l . * * l 

Longitudinal and Lateral responses to 6Oa, 2OB initial 
conditions, no turbulence, altitude 6096 meters, speed 
.7 Mach 

W C  models 7,8,18,19 .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  a .  l l l 

Control probability responses to 6Oc1, 2OB initial conditions 
no turbulence, altitude 304.8 meters, speed .7 Mach 

(a) MMAC responses, Models 6,7,8,10 
(b) MMAC responses, Models 7,8,18,19 . . . . l * * * * * * * 

Longitudinal responses to 6O~1, 2OB initial conditions in 
4.57 m/set rms turbulence at 304.8 meters altitude, speed 
.7 Mach 

(a) Perfect identification responses 
(b) MMAC responses, Models 6,7,8,10 l * * . . . l * * l . * 

Xii 

PAGE -- 

6-30 

6-31 

6-32 

7-2 

7-3 

7-5 

7-17 

7-18 

7-20 

7-21 



7.4.8 

7.4.9 

7.4.10 

7.4.11 

7.4.12 

7.4.13 

Lateral responses to 6Oc1, 2OB initial conditions 
in 4.57 m/set rms turbulence, altitude 304.8 meters, 
speed .7 Mach 

(a) Perfect identification responses 
(b) MMAC responses, Models 6,7,8,10 . . . . . . . . - . . . 

Longitudinal Responses to 6Oa, 2O@ initial conditions 
1.22 m./sec rms turbulence, altitude 304.8 meters, speed 
.7 Mach 

(a) MMAC responses, Models 6,7,8,10 
(b) MMAC responses, Models 7,8,18,19 
(c) MMAC responses, Models 6,8,18,19. . . . . . . . . . l l 

Lateral responses to 6Oc, 2OB initial conditions, 1.22 m/set 
rms turbulence, altitude 304.8 meters, speed .7 Mach 

(a) MMAC responses, Models 6,7,8,10 
(b) MMAC responses, Models 7,8,18,19 
(c) MMAC responses, Models 6,8,18,19 . . . . . . . . . . . . 

Control Probability and m(t) responses to ~OCX, 2Of3 initial 
conditions, 1.22 m/set r ms turbulence, altitude 304.8 meters, 
speed .7 Mach 

MMAC Models 6,7,8,10 . . . . . . . . . . . . . . . . . . . . 

Control Probability and m(t) responses to 6Oc1, 2O@ initial 
conditions, 1.22 m/set rms turbulence, altitude 304.8 meters, 
speed .7 Mach 
MMAC Models 7,8,18,19 . . . . . . . . . . . . . . . . . . . . 

Control Probability and m(t) responses to 6Oa, 2OB initial 
conditions, 1.22 m/set r ms turbulence, altitude 304.8 meters, 
speed .7 Mach 
MMAC Models 6,8,18,19 . . . . . . . . . . . . . . . . . . . . 

Longitudinal responses to elevator doublet command, no turb- 
ulence, altitude 304.8 meters, speed .7 Mach 

(a) MMAC responses, models 6,7,8,10 
(b) MMAC responses, models 6,7,8,20 
(c) MM&C responses, models 7,8,18,19 
(d) MMAC responses, models 6,8,18,19 . . . . . . . . . . . l . 

Longitudinal control probability and m(t) responses to 
elevator doublet command, no turbulence, altitude 304.8 meters, 
speed .7 Mach 

PAGE 

7-22 

7-23 

7-24 

7-25 

7-26' 

7-27 

7-28 

(a) MMAC responses, models 6,7,8,10 
(b) MMAC responses, models 6,7,8,20 . . . . . . . . . . . . 7-29 

xiii . Y 
,m- 



PAGE FIGURFS 

7.4.14 

7.4.15 

- 7.4.16 

7.4.17 

7.5.1 

7.5.2 

7.5.3 

7.5.4' 

7.5.5 

7.5.6 

7.5.7 

7.5.8 

7.5.9 

Longitudinal control probability and m(t) responses to 
elevator doublet command, no turbulence, altitude 304.8 
meters, speed .7 Mach 

(a) MMAC responses, models 7,8,18,19 
(b) MMAC responses, models 6,8,18,19 . . . . . . 9 . . . . 

Longitudinal responses to elevator doublet command, 
1.22 m/set rms turbulence, altitude 304.8 meters, 
speed .7 Mach 

(a) .MMAC responses, models 6,7,8,10 
(b) MMAC responses, models 6,7,8,20 ~ 
(c) MM&C responses, models 7,8,18,19 . . . l . . l . . l i 

Longitudinal control probability and m(t) responses to 
elevator doublet command, 1.22 m/set rms turbulence, 
altitude 304.8 meters, speed .7 Mach 

(a) MMAC responses, models 6,7,8,10 
(b) MMAC responses, models 6,7,8,20 
(c) MMAC responses, models 7,8,18,19 l . . . . . l . . . . 

Lateral responses to aileron doublet command, no turbulence 
altitude 304.8 meters, speed .7 Mach, MMAC models 6,8,18,19 

Pitch Rate Responses at F.C.ll, no turbulence altitude 6096 
meters, speed .6 Mach . . . . . . . . . . . . . . . . . . . 

Normal Acceleration Responses at F.C. 11, no turbulence. 
Altitude 6096 meters, speed .6 Mach . . . . . . . . . . . . 

Lateral Acceleration Responses at F.C. 11, no turbulence. 
Altitude 6096 meters, speed .6 Mach . . . . . . . . . . . . 

Longitudinal System Identification Probabilities at F.C. 11, 
no turbulence, altitude 6096 meters, speed .6 Mach. . . . . 

Pitch Rate Responses at F.C. 11, 4.57 m/set rms turbulence, 
altitude 6096 meters, speed .6 Mach . . l l l . l . . . l l 

Normal Acceleration Responses at F.C. 11, 4.57 m/set rms 
turbulence, altitude 6096 meters, speed .6 Mach . . l . . . 

Lateral Acceleration Responses at F.C. 11, 4.57 m/set rms 
turbulence, altitude 6096 meters, speed .6 Mach . . l l . l 

Low-pass Filtered Longitudinal System Probabilities 

7-30 

7-31 

7-32 

* 7-33 

7-40 

7-41 

7-42 

7-43 

7-44 

7-45 

7-46 

at F.C. 11, 4.57 m/set rms turbulence, altitude 6096 meters, 
speed .6 Ma& . . . . . . . . . . . . . . . . . . . . . . . 7-47 

Low-pass Filtered Lateral System Probabilities at F.C. 11, 
4.57 m/set rms turbulence, altitude 6096 meters, speed .6 Mach 7-48 

XiV 



FIGURES -___ 

7.5.10 

7.5.11 

7.5.12 

7.5.12 

7.5.14 

7.5.15 

7.5.16 

7.5.17 

7.5.18 

--~ - .- 

\’ 
.PAGE A .*. 

Low-pass filtered Longitudinal System Probabilities at 
F.C. 11, 4.57 m/set rms turbulence, altitude 6096 meters, 
speed .6Mach . . . . . . . . . . . . . . . . . . . . . . . 7-49 ".. 

Low-pass Filtered Lateral System Probabilities at F.C. 11, 
4.57 m/set rms turbulence, altitude 6096 meters, speed .6 Mach 7-50 

Longitudinal responses to 6Ocl, 2O@ initial conditions, no 
turbulence., altitude 6096 meters, and speed .6 Mach 

(a) MMAC responses, Models 10,11,12,17 
(b) MMAC responses, Models 10,12,17,18 
(c) MMAC responses, Models 6,13,16,17 . . . . . . . . . . 

Lateral responses to 6Ocl, 2O(3 initial conditions, 
no turbulence, altitude 6096 meters, speed .6 Mach 

(a) MMAC responses, Models 10,11,12,17 
(b) MMAC responses, Models 10,12,17,18 
(c) MMAC responses, Modeis 6,13,16,17 . . . . . . . . . . 

Control probability response to 6Oo1, 2O(3 initial conditions, 
altitude 6096 meters, speed .6 Mach no turbulence 

(a) MMAC responses, Models 10,11,12,17 
(b) MMAC responses, Models 10,12,17,18 
(c) MMAC responses, Models 6,13,16,17 . . . . . . . . . . 

Longitudinal responses to elevator doublet command, no 
turbulence, altitude 6096 meters, speed .6 Mach 

(a) perfect identification responses 
(b) MMAC responses, models 10,11,12,17 
(c) MMAC responses, models 10,12,17,18 . . . . . . . . . . 

Longitudinal responses to elevator doublet command, no 
turbulence, altitude 6096 meters, speed .6 Mach 

(a) perfect identification responses 
(b) MMAC responses, models 6,13,16,17 . . . . . . . . . . . 

Control probability responses to elevator doublet command, 
no turbulence, altitude 6096 meters, speed .6 Mach 

(a) MMAC responses, models 10,11,12,17 
(b) MMAC responses, models 10,12,17,18 
(c) MMAC responses, models 6,13,16,17 . . . . . . - . . . . 

Longitudinal responses to elevator doublet command, no 
turbulence, altitude 6096 meters, speed .6 Mach 

(a) perfect identification responses 
(b) MMAC responses, models 10,11,12,17 
(c) MMAC responses, models 10,12,17,18 . . . . . . . . . - 

xv 

7-51 

7-52 

7-53 

7-54 

7-55 

7-56 

7-57 

- 



PAGE 

7.5.20 

7.5.21 

7.5.22 

7.5.23 

7.5.24 

7.6.1 

7.6.2 

Longitudinal control probability and m(t) responses to 
elevator doublet command, no turbulence, altitude 6096 
meters, speed .6 Mach 

(a) MMAC responses, models 10,11,12,17 
(b) MMAC responses, models 10,12,17,18 . . l l . l . l l l 

Longitudinal responses to elevator doublet command, 1.22 
m/set rms turbulence, altitude 6096 meters, speed .6 Mach 

(a) MMAC responses, models 10,11,12,17 
(b) MMAC responses, models 10,12,17,18 . . . . . . . . . . 

Control probability and m(t) responses to elevator doublet 
command, 1.22 m/set rms turbulence, altitude 6096 meters, 
speed .6 Mach 

(a) MMAC responses, models 10,11,12,17 
(b) MMAC responses, models 10,12,17,18 . . . . . . . . . . 

Lateral responses to aileron doublet command, no turbulence, 
altitude 6096 meters, speed .6 Mach 

(a) perfect identification responses 
(b) MMAC responses, models 10,11,12,17 . . . . . . . . . . 

Lateral responses to aileron doublet command, no turbulence, 
altitude 6096 meters, speed .6 Mach 

(a) MMAC responses, models 10,12,17,18 2O magnitude 
(b) MMAC responses, models 10,12,17,18,1° magnitude * . * * 

Control probability responses to aileron doublet command, 
zero turbulence, altitude 6096 meters, speed .6 Mach 

(a) MMAC responses, models 10,11,12,17 
(b) MMAC responses, models 10,12,17,18, 2O magnitude 
(b) MMAC responses, models 10,12,17,18, lo magnitude * l * 

Longitudinal responses to 6Oa, 2OB initial condition, 
altitude 12192 meters, speed 1.2 Mach 

(a) perfect identification responses 
(b) MMAC responses, Models 13,17,18,19 
(c) MMAC responses, Models 12,13,17,19 . . * * * * * * * * 

Lateral responses to 6Oc1, 2OB initial condition, 
altitude 12192 meters, speed 1.2 Mach 

(a) perfect identification responses 
(b) MMAC responses, Models i3,17,18,19 
(c) MMAC responses, Models 12,13,17,19 * . . * * . . . * l 

xvi 

7-58 

7-59 

7-60 

7-61 

7-62 

7-63 

7-67 

7-68 



w 

t ;!/ ii1 
$ FIGURES 
1 

7.6.3 

7.6.4 

7.6.5 

7.6.6 

7.6.7 

7.6.8 

7.6.9 

7.6.10 

PAGE 

Lateral responses to 6O~l, 2Of3 initial condition, altitude 
12192 meters, speed 1.2 Mach 

(a) MMAC responses, Models 13,17,18,19 
(b) MMAC responses, Models 12,13,17,19 . l . . . l . l . . 7-69 

Longitudinal responses to elevator doublet command, no 
turbulence, altitude 12192 meters, speed 1.2 Mach 

(a) MMAC responses, models 13,17,18,19 
(b) MMAC responses, models 12,13,17,19 . . . . . . . . . l 7-70 

Control probability and m(t) responses to elevator doublet 
command, no turbulence, altitude 12192 meters, speed 1.2 Mach 

(a) MMAC responses, models 13,17,18,19 
(b) MMAC responses, models 12,13,17,19 . . . l . . . . . * 7-71 

Longitudinal responses to elevator doublet command, 1.22 m/set 
rms turbulence, altitude 12192 meters, speed 1.2 Mach 

(a) MMAC responses, models 13,17,18,19 
(b) MMAC responses, models 12,13,17,19 - . . . . . . . . * 7-72 

Longitudinal control probability and m(t) responses to elevator 
doublet command, 1.22 m/set nns turbulence, altitude 12192 
meters, speed 1.2 Mach 

(a) MMAC responses, models 13,17,18,19 
(b) MMAC responses, models 12,13,17,19 . . . . . . . . . . 7-73 

Lateral system responses to aileron doublet command, no 
turbulence, altitude 12192 meters, speed 1.2 Mach 

(a) MMAC responses, models 13,17,18,19 
(b) MMAC responses, models 12,13,17,19 . . . . . . . . . . 7-74 

Lateral control probability and m(t) responses to aileron 
doublet command, no turbulence, altitude 12192 meters, 
speed 1.2 Mach 

(a) MMAC responses, models 13,17,18,19 
(b) MMAC responses, models 12,13,17,19 l l l . . . . . . l 7-75 

Lateral system responses to aileron doublet command, 
1.22 m/set rms turbulence, altitude 12192 meters, speed 
1.2 Mach 

(a) MMAC responses, models 13,17,18,19 
(b) MMAC responses, models 12,13,17,19 . . . . . . . . . . 7-76 

xvii 



FIGURES 
. . 

7.6.11 

;, 

.* / 

8.3.1 

$:3.2 
I 

8,3.3 

8,3.4 
,' 

PAGE . 

Lateral control probability and m(t) responses to ailerqn : . 
doublet command, 1:22 m/s& %kis lkrbulence,, alti&de:,l2192 

'meters, speed 1.2.Mach 
. .,. . . 

(a) I&AC responses-, models‘?~;17,.18,19 L '., ,:;:. " 
(b) tiMAC'responses, mode~~i12,13,17;19 . . . . . . . . . . . 7-77 

..' R&&x&s to longitudinalf&&tem inputs, no turbulence~~~ 
altitude 6096 meters, speed k&h .83, level flight.‘.“ 
y&hypothesis models 10,&,.12,17. . . . . . . . .: r:.,, t . . . 8-9 

~._ . .* . .,,_ 1 ei x 
,. 

"ReBponses to Lateral sy.k&m 'kputs, ‘no turbulence, :-‘i-$r. . . . . 

6096 meters, speed Mach'-k~~,~'level flight. 
alt-itude 

MMAC hypothesismodels 10,11,12,17. . . . . . _. . ,\?;t :, '.a' ...'-. . ., 8-10 
.- I . 
'Rek.p%ses to longitudinal.'%& lateral, system inputs, .no 
turbulence, altitude 6d96'm&e&, speed .82 Mach, ievei flight. 

?,.. . . . . . . . f . . e-11 
., ," 

MMAC hypothesis models 11,,12,.13,17. :f,.;L'.' . *:_ , _ .I<.,,. 
,. ,; . . *. :* i .( I ..I 11.7. I is'. 

Responses -to iongitudinar-and lateral&tern input;; ,no: 
'turbulence, altitude 13;i'b6?“meters, speed .87 Mach, level 
flight. . 

, .*. k$C:hypothesis'models ii$;&,l,7.- -- . . .. - . . ,., iri.:; . . 8-12 

Sk5 
8 . 

*Responses to longitudinal dnd laterai system inputs,'& 
-I 

turbu.lence, altitude 609.6T6mLe.ters,. speed . 6 Mach. =, ;mti.,.:,r.2::d 
MMAC-hypothesi's models, lO,lL,l2,17. ., . - . . . T t '+.2..): . . -8-13 I ,~ .1> . 

8i3.6 ' 
.., 

*Giobai aircraft'responses ‘and'rdentification system responses 
during slov climb,.?0 turb~~l~pce,.alf;itude 9144.meteqsa. 

-I" speed' 1.1 Mach ; . : i‘. . . . . . :, . . . c . .>.; :  _ 2J.r l l 8-14 ,-_ 

8.3.7 Longitud$al and lateral system responses during slow.cllmb, 
“' ii0 turb~lencg, altitude .'9144 meters-,-speed; l.l.+Jach.. '.. . . S-15 . . i> -'.A _' 

I . 
8ij.8 Control probability and m(t)' responses'during deceleration 

maneuvers, 

_ : ,k,.tc 
no turbulence,:.gl~l~~4e 6096 meters, speeds .6 Mach 

.44 Mach. _; . . Y :- . 1 ;*:sjf+ a a * :* .a . . . . . 8-16 ;_ _ _, I- ,', ,:: '- - '? t' 0. 

8.3.9 Global aircraft responses..and,model s,cheduling evolution- 
" "during diving maneuvers,..@-turbulence. . . . %. . . . 1w . . 8-17 ,- 

8.%.10 Control probabkity responses during diving maneuvers, 
. . . : I no turbulence, initial altitude 6096 meters, initial-speed 

.!Zi &ch . . . . : . . . .+;rl . . . . . . . . . : . . t . . . . 8-18 , 

8.3.11 .' Longitudinal system responses during diving maneuvers, no 
"turbulence, 
.5 'j&h 

initial altitude.~~6096 meters, , _..-. ., initial speed. 
. . . . ; ; . . ._,_.: . . . i . . . . . . ., .~ t . . . ..‘ 8-19 .a . 

8.3.12 .Lateral system responses .during diving maneuvers., no.turb- 
-&Ye&e, '&itiaal.altitude 6096 :meters, initial speed .5 Mach 8-2, * , . 

8:3.13 Global aircraft responses and model scheduling evolution 
during maneuvers near 2438 meters, no turbulence, speed 
.6Mach . . . . . . . . . . . . . . . . . . . . . . . . . . 8-21 

xviii 



-T 

FIGURES 

8.3.14 

8.3.15 

8.3.16 

8.3.17 

8.3.18 

8.3.19 

8.3.20 

8.4.1 

8.4.2 

8.4.3 

8.4.4 

8.4.5 

8.4.6 

8.4.7 

8.4.8 

Control probability responses during maneuvers near 
2438 meters, no turbulence, speed .6 Mach l l l l l l l I . 

Longitudinal system responses during maneuvers near 
2438 meters, no turbulence, speed .6 Mach l l l l l l l . . 

Lateral system responses during maneuvers near 2438 meters, 
noturbulence,speed.6Mach ....mm=====.... 

Global aircraft responses and model scheduling evolution 
during climbing maneuvers, no turbulence, initial altitude 
1524 meters, initial speed .51 Mach . . l . l . . . ? . . . 

Control probability responses and model scheduling evolution 
during climbing maneuvers, no turbulence, initial altitude 
1524 meters, initial speed .51. Mach . l . . l . . . . . . . 

Longitudinal system responses and model scheduling evolution 
during climbing maneuvers, no turbulence, initial altitude 
1524 meters, initial speed .51 Mach . l . l l l l l l l l l 

Lateral system responses and model scheduling evolution during 
climbing maneuvers, no turbulence, initial altitude 1524 
meters, initialspeed.51Mach . . . . . . . . . . . . . . 

Global aircraft and model scheduling responses during 
acceleration maneuvers, altitude 6096 meters, speeds .4 to 
1.02 Mach , . . . . . . . . . . . . . . . . . . . . . . . . 

Control probability responses during acceleration maneuvers, 
altitude 6096 meters, speeds .4 to 1.02 Mach l l l l l l l l 

Global aircraft and model scheduling responses during deceler- 
ating maneuvers using speed brake, altitude 6096 meters, 
speeds .6 to .38 Mach . . . . . . . . . . . . . . . . . . . 

Control probability responses during decelerating maneuvers 
using speed brake, altitude 6096 meters, speeds .6 to .38 Mach 

Global aircraft and model scheduling responses during descent 
and deceleration maneuvers, altitude 1829 to 304.8 meters, 
speed .8 to .6 Mach . . . . . . . . . . . . . . . . . . . . 

Control probability responses during.descent and deceleration 
maneuvers, altitude 1829 to 304.8 meters, speeds .8 to .6 Mach 

Global aircraft and model scheduling responses during combined 
climbing and accelerating maneuvers, altitude 4572 to 7926 
meters, speeds .36 to 1.02 Mach . . . l l l l l l m  l l l l 

Control probability responses during combined climbing and 
accelerating maneuvers, altitude 4572 to 7925 meters, speeds 
.36 to 1.02 Mach .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  l .  .  .  

8-22 

8-23 

8-24 

8-25 

8-26 

8-27 

8-28 

8-31 

8-32 

8-33 

8-34 

8-35 

8-36 

8-37 

8-38 

xix 



LIST OF TABLES 

TABLES 

1.2.1 

1.3.1 

3.3.1 

3.4.1 

3.5.1 

3.7.1 

3.8.1 

5.3.1 

5.6.1 

5.7.1 

6.3.1 

7.3.1 

7.3.2 

7.4.1 

8.2.1 

List of Aircraft Sensors Used in the MMAC Study . . . . . . 

Flight Conditions Used in MMAC Study l . l l . l l . . l . . 

Longitudinal Variables ................... 

Dependence of Scale Length L Upon Altitude ......... 

Notation for Noisy Longitudinal Sensors . . . . . . . . . . 
atic 

3-10 

Lateral Dynamics Variables l . l . .. . . . . . . . . . . . . 3-15 

Notation for Lateral Sensors . l . l l . l . . l . . . . . l 3-18 

Damping Patio for Closed-Loop Short Period Poles As A 
Function of Maximum Pitch Rate Penalty, <=, IN (5.3.11.. . 

Table for Gains that Appear In Longitudinal Command Systems 

Trim Values for Flight Conditions. . . . : . . . . . . . . . 

Summary of Cost Function Progression for the Lateral Dynamics 

Longitudinal System Stability Summary Table. . . . . . . . . 7-8 

Lateral System Stability Summary Table . . . . . . . . . . . 7-9 

B* Values of Flight Conditons . . . . . . . . . . . . . . . 7-16 

PAGE 

l-5 

l-8 

3-3 

3-6 

5-8 

5-16 

5-18 

6-10 

Altitude Scheduling Table . . . . . . . . . . . . . . . . . 8-3 

xx 



: ::s-1 

~SYMBOLS 

:;l.‘.’ 
Continuous time system matrix 

. . 

%ed 
Short period dynamics continuous time system matrix 

,., -: :_ . 

% 
Discrete-time system matrix 

,+, CT J ;-. . - .- 3 - 

% System matrix of model in model-following design 
* %? 5-I: i 

% 
Implicit pilot-model system matrix 

>-;- .._ iA -1 
A(Y) -- System matrix for parameter value 1 

. 
= gyi'=Ay 

,-,c::- I. 

% Discrete time systemmatrix for hypothesis 

model i, for parameter;&.,;. 

B Continuous time input ma:rix ..-.I I 

%ed - Short period dynamics co?tinuous time input matrix 

% Discrete time input matrix. ,I';? . . 

% Input matrix for model,i~J,mod,el-following design .b 

% 
, Implicit input matrix for pilot model ',;ic.. ,. . I. 

B (VI -- -Input matrix for parameter ,values r : " . . 

%i = gyi'=E&i Discrete-time input matrix for hypothesis 

model i, for parameters xi 

c Observation matrix 

. 

C(Y) -- Observation matrix for parameter values 1 

% = C(Y.1 Observation matrix for hypothesis model i, for 
--i parameters yi 

kc (1) 10) 3 Conditional expectation of (11 given (21 

3 
Gain matrix for hypothesis model i 

GR Geaxing ratio 

G 
9 

Steady-state gain between elevator deflection from trim 
and pitch rate. 

xxi 



s-2. : 

Gi 
9 

Gcz 

Gi ’ 

ia 
E ($) 

Hi 

I 

=i 

K 

IO? 

II 

L 

L 

L(Y) 

LCy*,=~ - -1 

%ed 

Mi 

MMAC 

N 

Gq for hypothesis model..i. 5 '. 

Steady-state given between-elevator deflection from trim 
and angle of attack 

._,‘Y. 
GG for hypothesis model i 

" : 
Kalman Filter gains for hypothesis model i 

Hypothesis model i Cl=&) 

Identity matrix 

Quadratic cost used forMhypothesis model i 

Constant used in wind turbulence model 

Kalman Filter 

Ricatti equation solution 

scale length used in wind turbulence 

Continuous time disturbance matrix 

Discrete time disturbance matrix for 

Discrete time disturbance matrix for 
for yq. 

.:. 

.a 

model 
,.'I 

: 
parameter values 

hypothesis model 

Short-period continuous .time disturbance matrix 

Steady state predicted covariance of x(t+l) given .2(t) 

Multiple Model Adaptive Control system 

Number of hypothesis models used 

Y 
i, 

.N( (1) ; (2)) Gaussian distribution, mean (11, covariance (2) 

N Noise covariance 

P(Q) Probability of value of lbeing & 

pi 
Identification probability corresponding to hypothesis model i 

PiC 
Control Probability corresponding to hypothesis:wdel i 

xxii 



s-3 

vO 

WRS 

2 (t) 

a 

a. 
G 

aY 

=,a ns 

bi,b. . 
13 

g 

m 

m(t) 

mi(t) 

P(Y) 

State weighing matrix used in quadratic cost Ji 

Control weighing matrix used in quadratic cost Ji 

Covariance matrix for residual vector 1 

Covariance matrix of residual vector r+ assuming 
hypothesis model i is timei -. ..-.. ; .a.., 

True airspeed of aircraft. . (r. ;. ': ' 

Weighted sum of residuals squared 'rl ; 

Set of post:observations $(l).,...=(t) and decision 
u(O) ,...k(t-l) 

Time constant used in actuator models 

Element of matrix A - 

Lateral acceleration 

Normal acceleration 

Element of vector or matrix g 
: : .- 
Normal acceleration due to gravity 

.: 1. 
Dimension of the residual vector r 

Weicjhted residual square signal 

Weighted residual square signal for hypothesis model i 

Probability density of 1 

p{(1)1(2)) Conditional probability density of (1) given (2) 

P Roil rate 

q Dynamic pressure 

q(t) tq Pitch rate 

r .Yaw .rate 

r tiesidual vector. 

=i Residual vector for hypothesis model i 

S Symbol used in representation of transfer functions 

S Stick input 

, .- - 



s-4 

t 

U - 

% 

%l 

V 

W 

X - 

2 - 

5 (t) 

ig (t) 

z - 

2 - 

%n 

911 

Time period 

Input vector 

Input vector suggested by hypothesis model i 

Input vector to model in model-following design 

Velocity difference from trim 

Normalized wind disturbance 

State vector 

Optimal estimate of state vector 

Predicted estimate of state vector by hypothesis model 
at time t 

Updated estimate of state vector by hypothesis model i 
at time t 

Observation or measurement vector 

Predicted measurement vector 

States of model in model-following design 

Measurement reading of quantity (1) 

i. 

Greek Symbols 

a Angle of attack deflection from trim value 

B Sideslip angle 

Bi I Bi* Constants in conditional probability densities generated 
by hypothesis model i 

Y 

Y. -l. 

& 1 

Parameters describing possible models of the system 

Parameters describing the ith hypothesis model used in MMAC 

Dyrac delta function 

xxiv 



s-5 

6 
ec 

Is a 

8 ac 

6 r 

6 rc 

PI ec 

B rc 

8 ac 

6( 1 

8 

0 - 

8 

Tl) 

+ 

$4 
Tr 

5 

z 

V 

uI.o 

Eplt) 

Commanded elevator deflection from trim position 

Aileron deflection 

Commanded aileron deflection 

Rudder deflection 

Commanded rudder deflection 

Canmanded elevator deflection rate 

Ccanmanded rudder deflection rate 

Commanded aileron deflection rate 

Kronecker delta function 

Measurement noise vector 

Measurement noise covariance 

Pitch angle deflection from trim value 

Sensor noise in measurement of (1) 

Bank angle 

Spectral density of turbulence model 

3.1415... 

White noise disturbance 

Covariance of 5 

White noise normalized disturbance 

rms value of vertical gust velocity 

Conditional covariance of x(t) given Z(t) 

~~(t+llt) Conditional covariance of x(t+l) given Z(t) 

w Frequency 

General Abbreviations 

(l) LAT Symbol 1, for the lateral system 

%QN Symbol 1, for the longitudinal symbol 

XXV 



l-l 

CHARTER 1 

INTRODUCTION, CONCLUSIONS, AND RECOMMSNDATIONS FOR FUTURE RESEARCH 

1.1. Introduction 

This report presents the results of a research study which deals 

with the feasibility of using an advanced adaptive control method, the 

so called Multiple Model Adaptive Control (MMAC) method specifically 

applied to the design of a stability augmentation control system for 

the longitudinal and lateral dynamics of the NASA F-SC digital-flight- 

by-wire aircraft. This study represents only one out of several 

studies initiated by NASA Langley Research Center dealing with the de- 

velopment and evaluation of different advanced control, identification, 

and failure management strategies for the F-SC aircraft. Several of 

these contributions appeared in an issue of the IEEE Transactions on 

Automatic Control 111. 

The paper by Elliott [2] presents an overview of the NASA F-SC 

program. For the practically minded reader it is important to stress 

that the results presented in this report represent a research effort 

and a feasibility study, strongly influenced by certain design guidelines, 

which will be described in detail later on , whose purpose was to make 

the adaptive control problem for the F-8 aircraft intentionally difficult. 

As explained in reference [2] the open loopcharacteriktics of the F-8 

aircraft are such that complex stability augmentation systems are not 
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necessary. In fact the F-8 aircraft does not require any sophisticated 
I .' 

control systems for adequate performance. Rather it serves as a test 

bed for digital fly-by-wire studies, and as a vehicle by which several ., i. .. 
methodologies for adaptive control, as well as failure detection and 

>. 
redundancy management can be evaluated. 

For any conventional aircraft, the need for adaptive control 

may occur if the aircraft is to be operated at a variety of operating 

flight conditions as characterized by flight at different altitudes 

and speeds,and under different conditions of wind- turbulence. The dy- 
; 

namic characteristics of the aircraft change over its flight envelope 

to a significant degree, since changes in dynamic pressure cause 

changes in the aircraft aerodynamic forces and the effectiveness 
.: 

of the control surfaces. Thus a real-time adaptive control 

system, based upon measurements obtained from the aircrhft 

sensors, has to determine in an approximate way the dynamic character- 

istic of the aircraft at different points in its flight envelope. 

One predominant parameter causing changes in the dynamic character 

istics of any aircraft is, of course, dynamic-pressure. If a 

reliable estimate of the dynamic pressure is available, and reasonably 

accurate aircraft models are available for each value of the dynamic 

pressure, then one could design,in more or less straightforward manner, a 

control system for the F-8 based upon the gain-scheduling approach; see 

references [31,[4]. Gain scheduling has been long recognized as an 
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effective method for aircraft control giveninformation about the dynamic 

pressure. 
: 

The design guidelines under which this study was carried out were 
I 

such that an estimate of the dynamic pressure could not be obtained 

using the sensors that were allowed. A parallel study, carried out by 

a research team from Honeywell, Inc., see references [31,[41, directly 

addressed the problem of estimating key aerodynamic parameters related 

to dynamic pressure from longitudinal aircraft sensors, and then using 

the estimate of dynamic pressure in order to do adaptive gain-scheduling. 

The methodology employed in this study is philosophically different 

than the one used by Honeywell, although the final implementation of 

the adaptive control system presented in this study is quite similar, 

from a structural and computational point of view. 

1.2 Sensors 

The performance of any aircraft command stability augmentation 

system will be strongly influenced by the specific dynamics of the 

aircraft,the available sensor measurements and their accuracy, and the 

overall philosophy of desi,gning the control system. The net outcome 

should result $,n, closed loop dynamics that have appealing handling 

charactexistics as far as the pilot is concerned. 

- - 
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In this study the dynamics of the aircraft were those of the F-8 

aircraft. Since the objective of this study was to test the feasibility 

of ths IYMAC algorithm for aircraft control, the guidelines of the study 

were such that superior handling qualities were not one of the major 

required outputs of this study. Rather, the emphasis was on the adap- 

tive identification and control aspects of the problem. This would 

then be strongly influenced by the sensors that one was allowed to use 

in the study, and the design methodology employed. Table 1.2.1 provides 

a list of the sensors that were used in the MMAC study. The general 

guidelines agreed upon by the NASA/LaRC and M.I.T./ESL was to utilize 

sensors that did not involve air data. Thus, sensors that utilize air 

data, such as sideslip vanes and angle of attack vanes were not used. 

Also, airspeed and accurate altitude information were excluded 

from the set of sensors that would be utilized. It should be noted that 

if accurate velocity and altitude sensors were used, then one could 

obtain an estimate of dynamic pressure, and one could construct the 

control system using simple gain-scheduling. In the absence of dynamic 

pressure estimates the adaptive control problem became particularly 

challenging. This dictates the complexity of the resultant MMAC design. 

Once the question of available sensors was settled, the decision 

was made to fully take into account the stochastic aspects of these 

sensors. The design guidelines adopted were such that full use of 

Kalman filters was required. In the Honeywell study [4] no direct 
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LIST OF AIRCRA??T SENSORS USED IN THE MMAC STUDY (c :. . ,. 

Pitch Rate Gyro :' 

Normal Accelerometer. 

Roll Rate Gyro 

'Yaw Rate Gyro 

Lateral Accelerometer 

Aileron Actuator * 

Rudder Actuator* 

Pitch Angle Gyro 

Bank Angle Gyro 

Altitude Sensor 

Sensors available for telemetering but not 
for control . 

_.. 
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Kalman filtering of the sensor measurements was made, except for iden- 

tification purposes. In the MMAC design the use of Kalman filters for 

processing the sensor measurements from both the longitudinal and lateral 

dynamics had a two-fold purpose. First, the Kalman filters generated 

state variable estimates which were then utilized by the control system, 

and second, the Kalman filters also provided the necessary information 

which acted as the input in the adaptive identification algorithm. 

In order to minimize real-time computational requirements, the 

decision was made to use only constant gain Kalman filters. The use of 

time-varying Kalman filters may have improved the accuracy of the state 

estimates and the performance of the identification algorithm. Time- 

varying Kalman filters were not evaluated in this study, because it was 

obvious that their real-time computational requirements were extensive. 

1.3 Models 

In any estimatioh and control system design,'the performance of 

both the estimation ahd the control algorithms is strongly influenced 

by the accuracy of the dynamic models for the underlying system. In the 

case of aircraft the most accurate dynamic models are those described 

by nonlinear differential equations which include all the coupling terms 

between the longitudinal and lateral dynamics. 
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The design guidelines agreed by NASA/LaRC and M.I.T./ESL were that 

only linear models associated with equilibrium flight could be used; 

these models did not include the coupling between the longitudinal 

and lateral dynamics; and they were described by linear time-invariant 

differential equations. 

The operating envelope of the F-8 aircraft, defined in terms of 

altitude and speed, was approximated by using the linear equilibrium 

models of the aircraft at different flight conditions. These flight 

conditions, and their location in the flight envelope are summarized 

in Table 1.3.1. The numerical values used for the linearized open loop 

dynamics were provided by NASA/LaRC. 

1.4 Control Philosophy 

In this section the control philosophy is discussed, exclusive 

of the adaptive identification and control methods associated 

with the MMAC design. The key properties of the MMAC design will 

be discussed in detail in Chapter 2. This section outlines the metho- 

dology used for designing the control system given knowledge of the 

flight condition of the aircraft. 

The design methodology consisted of two parts. First, it 

was agreed that one should understand the design of the regulator 

and gust alleviation system, i.e. the system that returns the aircraft 

to equilibrium flight, following any initial perturbations from it, 

and maintaining the aircraft on equilibrium flight in the presence of 
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TABLE 1.3.1. 

FLIGHT CONDITIONS USED IN MMAC STUDY 

Flight Altitude Dynamic Pressure 

Zondition No. ft(met) Mach No. lb,'ft2 (Newt/met2) 

#5 Sea level . 3 133.2 (6391) 

#6 Sea level -53 416.0 (19990) 

#7 Sea level -7 726.0 (34886) 

#8 Sea level . 86 1098.0 (52762) 

#lO 20,000 (6096) ..4 109,o (5237) 

#ll 20,000 (6096) .6 245.0 (12205) 

#12 20,000 (6096) .8 434.0 (2Ot354) 

#13 20,000 (6096) .9 550.0 (26429) 

#14 20,000 (6096) 1.2 978.0 (46995 ) 

#15 40,000 (12191) .7 135.0 (6487) 

#16 40,000 (12191) -8 176.0 (8457) 

#17 40,000 (12191) .9 223.0 (10715) 

#18 40,000 (12191) 1.2 397.0 (19077 1 

#19 40,000 (12191) 1.4 537.0 (25804) 

#20 40,000 (12191) 1.6 703.0 (33781) 
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random turbulence inputs. Second, the regulator design was to be 

modified so as to be able to incorporate pilot commands. 

For any given flight condition, the design guidelines required the 

construction of a complete Linear Quadratic Gaussian (LQG) design; see 

references [5], [6]. Both continuous-time and discrete-time designs 

were to be investigated. 

Since the open loop dynamics change from flight condition to 

flight condition, several constant gain Kalman filters and control 

gains had to be obtained, using the standard LQG approach. The nume- 

rical values of the control gains were to be determined in order to 

provide the aircraft with certain desired closed loop characteristics, 

which changed from flight condition tz flight condition. Therefore, one 

had to obtain a systematic way of defining the quadratic index of 

performance which changed in a natural way from flight condition to 

flight condition. The natural changes in the open loop dynamics as well 

as the changes in the performance index, resulted in, different numerical 

values for the Kalman filter gains and the control gains for each flight 

condition. 

It should be noted that significant simplifications can be made 

by modifying the LQG designs. This was not done, because the main 

thrust of the study was to understand the feasibility and performance 

of the MMAC method. At this point, it should be stressed that for any 

given known flight condition the transformation of the noisy sensor 
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measurements into commanded signals to the control surface. actuators 

requires the use of a Kalman filter followed by the operation upon 

the estimated state variables by control gains. The next chapter 

shows how this design methodology is modified in order to obtain the 

overall adaptive identification and control system design, which is 

called the Multiple Model Adaptive Control (MMAC) method. 

1.5 Brief Historical Perspectives 

As explained in [9] there are several algorithms that employ a 

parallel structure of compensators to generate adaptive estimation and 

control algorithms. To the best of the authors' knowledge the first ef- 

fort along these lines was that of Magi11 whose Ph.D. thesis culminated 

in [lo]. Along similar veins Lainiotis and his students examined more 

general conditions for adaptive estimation (see [ll] for a survey and 

discussion); Lainiotis calls these partitioned algorithms. Such ideas 

are also implicit in Aoki's book [12] and were also considered by Haddad 

and Cruz 1131. 

Multiple model type adaptive algorithms were considered by Stein [14] 

in his Ph.D. thesis, by Saridis and Dao [15], and by Lainiotis [16]-[17]. 

The properties of all these multiple model algorithms were examined by 

Willner [18] in his Ph.D. thesis. The structure of the specific MMAC 

algorithm used in this paper is akin to that by Deshpande et al. [19] and -- 

Athans and Willner [20] in which they examined a hypothetical STOL example. 

All these multiple model adaptive estimation and control algorithms 

represent blends of stochastic estimation and dynamic hypothesis testing 
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,deas. From an adaptive control point of view they are not dual control 

approaches (see 191 and [211). The F-8 specific design by Stein et al. -- - 

[4] can be also classified as a multiple model design. 

1.6 Conclusions 

This section contains a summary of the main study conclusions. 

The conclusions will be divided into two separate categories, namely 

conclusions with respect to the performance of the adaptive control 

system based upon the MMAC method. Since all identification and control 

simulations were based on a control system design that was based upon 

linearized models of the aircraft, about equilibrium flight conditions, 

the conclusions are only valid for maneuvering flight which does not 

deviate extensively from equilibrium flight. Roughly speaking the main 

conclusions pertain to flight or the F-8 aircraft throughout its flight 

envelope, under the constraints that the pitch attitude of the aircraft 

does not exceed 30°, and the bank angle of the aircraft does not exceed 

45O. If these limits are exceeded the equilibrium models become grossly 

invalid, and the MMAC design may yield poor performance and result in 

instability. 

1.6.1 Identification 

As long as there is sufficient excitation of the aircraft, either 

through pilot inputs or through turbulence inputs, the identification 

performance of the MMAC algorithm is satisfactory. In general, the 

accuracy and speed of the identification is better in the longitudinal 

dynamics than the lateral dynamics. It should be noted that no ex- 

ternal persistent excitation inputs were used in contradistinction to 
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the approach used by Honeywell [4]. In the absence of any persistent 

excitation, it is often difficult to obtain sufficient information 

from the noisy‘sensors to distinguish between flight conditions which 

are similar as far as the dynamic response of the aircraft is concerned. 

This does not necessarily imply a degradation in the performance of the 

adaptive control system. 

1.6.2 Adaptive Control 

The overall performance of the adaptive control system based upon 

the MMAC method was judged as satisfactory. As to be expected, the 

performance of the MMAC system was best when the flight conditions 

were close to the models used to implement the MMAC algorithm. In 

particular, the adaptive control system performed best when used as a 

regulator and as a wind gust alleviation system. The performance of 

the control system, viewed as a command augmentation system in the 

presence of pilot inputs, had certain inherent limitations due to 

the design methodology employed, which was not the best possible from 

the point of view of the aircraft handling qualities. 

In general, the performance of the longitudinal control system in 

response to pilot inputs was better than the performance of the la: 

teral control system. The lateral pilot command augmentation system, 

performed very well near its design point. The specific methodology 

employed in the design of the lateral control system was explicit 

model following of a lateral model which was velocity dependent: since the 
. I c 

aircraft velocity was not to be measured (nor estimated in the WC 

> 
approach) under the design ground rules, the lateral control system 

. 7. 
performed poorly when the actual. velocity of the aircraft differed sig- 



nificantly from the velocity employed for the model following base line 

case. In this respect, the aircraft.could follow commanded changes in 

the bank' angle quite well, at the expense of excessive sideslip angles. 

As a general methodology, the MMAC method is more general than the 

method used by Honeywell [4], which is much more tailored to the charac- 

teristics of the F-8 aircraft. As such it deserves further study, as 

a general methodology, in view of the specific way that the method employs 

parallel computation. As the cost and reliability of digital microproces- 

sors improve, the hardware implementation required by the MMAC algorithm 

becomes more and more viable. 

1.7 Recommendations for Future Research 

This section contains a list of specific recommendations for future 

research which are necessary for both improved understanding of the MMAC 

method as an adaptive design methodology, as well as for specific design 

changes that should be carried out before the present MMAC design is used 

in an actual flight test. 

1.7.1 Identification Performance Using Real Data 

Since there exists extensive data from the flight tests of the F-8 

aircraft, the identification and estimation part of the MMAC algorithm 

can be tested, analyzed, and.improved using this real data. The benefit 

of this study, will be to examine how the analytical models used in the 

development of the Kalman filters associated with the identification algorithm 

are compatible with the actual dynamics observed in flight. In this manner, 

one can test not only the identification accuracy and convergence speed of the 
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MMAC algorithm, but much more importantly one will obtain a much better 

idea of how to "tune" the Kalman filters for both the longitudinal and 

lateral dynamics. Through the use of real flight test data, one will 

be able to conclude how much information is provided by the longitudinal 

dynamics and how much information is provided from the lateral dynamics. 

At the present time, based on the recently completed Ph.D. thesis 

of Baram [7], one has a much better, but by no means complete, theore- 

tical understanding of the convergence properties of hypothesis-testing 

algorithms when the actual flight condition does not coincide with the 

flight conditions which have been used as models in the identification 

algorithm. The use of actual flight test data can increase the basic 

understanding of hypothesis testing based adaptive methods. 

1.7.2 Improvements in Kalman Filter Design 

The correct and accurate design of the discrete-time Kalman filters 

for both the longitudinal and lateral dynamics is very important. There 

are two reasons for having well-designed Kalman filters: first, the 

Kalman filters have to generate accurate estimates of the state variables 

to generate the commanded controls, and second, the residuals generated 

by the Kalman filters are the sole sources of information which drive 

the identification algorithm. 

Since the longitudinal control system was designed only for the 

control of the short-period dynamics, the longitudinal Kalman filters 

received noisy information only from the normal accelerometer and the 

pitch rate gyro. The available measurement of elevator position was 

not used so that one would not have to face the problem of decomposing 
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the elevator measurement into a trim value and a pilot input. A great 

deal of improvement can be made in the Kalman filter design, if one 

augments the states so as to estimate the elevator trim. The design 

will be similar to the one used by Honeywell 141 although this would 

contribute to an increase in the complexity of each individual longi- 

tudinal Kalman filter and to the overall real time requirements of the 

MMAC algorithm. To increase the estimation accuracy and robustness 

of the individual Kalman filters one should change the design of the 

discrete Kalman filters using the recently developed techniques of the 

discrete time compensated Kalman filters, as described in the report 

by Lee and Athans [81, especially given the chosen relatively low sam- 

pling rate of l/8 second. In addition, all the Kalman filters used in 

this study were designed for a fixed high level of turbulence. A more sys- 

tematic study is needed, especially if the actual flight data is used, 

to investigate whether or not the longitudinal Kalman filters are 

sensitive to the level of turbulence used for their numerical design. 

Similar comments could be made with respect to the design of the 

Kalman filters for the lateral dynamics. These Kalman filters will have 

to be very carefully tuned if indeed one wants to maximize the amount of 

information that could be extracted from lateral maneuvers of the aircraft. 

The Kalman filters employed for the lateral dynamics in this study were 

based upon equilibrium flight conditions. They do not perform adequately 

in the case of tight persistent turns, since these represent a different 

equilibrium flight for the aircraft. In the absence of such a study, 

one cannot conclude definitely what amount of information can be obtained 
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from the.lateral dynamics as compared to the longitudinal dynamics.. 

1.7.3 Control System Design 

The design of both the longitudinal and lateral control systems 

was based on the LQG methodology. There was little difficulty in 

designing adequate control systems for the regulator part of the design 

which can be used as a gust alleviation system. Improvements in the 

handling qualities are necessary for both the longitudinal and the 

lateral control system in the case of pilot inputs. 

From the handling qualities point of view, the current longitudi- 

nal design is minimally adequate. One recommended change is to incor- 

porate an additional integrator in the forward loop, using the results 

Qf Boussard and Safonov [28],which were not available at the time that 

the design was fixed. Effectively, such a change coupled with the low 

sampling rate employed in the design, 'will improve the performance of 

the longitudinal control system in the presence of sustained constant 

pilot inputs. In addition it will improve the performance of the 

longitudinal control system in the presence of constant but unknown 

wind forces which are not estimated by the Kalman filter. 

The lateral control system employed for the gust alleviation case 

is good. However, the lateral control system used as a stability aug- 

mentation system in the presence of lateral commands by the pilot is 

not satisfactory. Its basic shortcoming, from a handling qualities 

point of view, is that it cannot produce coordinated turns throughout 

the flight envelope. This is not a shortcoming of the methodology 

employed, but rather is due to the design constraints of what informa- 
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tion is available from the sensors. In order to execute a coordinated 

turn, and minimize the resultant lateral acceleration, one must have a 

good estimate of the aircraft velocity. In the design employed, such 

an estimate of velocity was not available. The lateral control system 

was designed on the basis of a single nominal velocity of the aircraft; 

corresponding to a flight condition in the middle of the operating 

envelope of the aircraft, and this nominal value of the velocity was not 

changed as the aircraft executed maneuvers throughout its flight envelope. 

As a result the lateral control system performs very well as long as the 

actual velocity of the aircraft is near the design velocity. When the 

actual velocity of the aircraft differs significantly from the nominal 

velocity used in the design, the aircraft has to respond in such a way 

that excessive lateral accelerations and sideslip angles are generated 

in order to follow the commanded bank angles by the pilot. The discus- 

sion and simulation results given in Chapter 6 make this point clear. 

If a crude estimate of the velocity were available, then it would be 

a straightforward matter to change the numerical values of the control 

gains used in the lateral control system so that satisfactory performance 

can be obtained throughout the flight envelope. 
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CHAPTER 2 

AN OVERVIEW OF THE MULTIPLE MODEL ADAPTIVE 
CONTROL METHOD 

2.1 Introduction 

In this chapter an informal presentation of the key ideas associated 

with the Multiple Model identification and adaptive control algorithm are 

presented, so as to stress the intuitive aspects of this adaptive identi- 

fication and control algorithm. A more rigorous treatment of the algorithm 

and its performance in the context of controlling the F-8~ aircraft will 

be given in subsequent chapters of this report. Some well known facts about 

Kalman filters are included so as to establish notation. Finally, this 

chapter concludes with a brief description of the contents of the remaining 

chapters of this report. 

2.2 Basic Idea of the Multiple Model Identification Algorithm 

Consider the situation depicted in Figure 2.2.1 which shows a 

dynamic system subject to the influence of a multivariable control, u(t), 

and external disturbances. Assume that the system contains noisy sensors 

that generate a set of measurements which form the components of the 

measurements vector, denoted by z(t). In the context of this study the 

true system represents the F-8C aircraft. The components of the control 

vector will be the commanded inputs to the surface actuators as generated 

by a combination of the pilot inputs and the signals generated by the 

stability augmentation system. The disturbances represent the forces on 

the aircraft generated by turbulence. The measurements are those generated 

by the aircraft sensors used in the design, as described in Chapter 1, 
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DISTURBANCES 

u(t) TRUE SYSTEM z(t) 
t 

CONTROL * (AIRCRAFT) SENSOR 
INPUTS MEASUREMENTS 

Figure 2.2.1 The structure of the system to be controlled. 
In aircraft applications the control inputs 
are the commanded inputs to the surface 
actuators. Disturbances are due to wind 
turbulence. The vector z-(t) denotes noisy 
sensor measurements. 
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Table 1.2.1. 

In general the noisy measurements generated by the sensors are not 

sufficient to obtain a good estimate of all the state variables of the 

true system. In these situations one must construct a Kalman filter 

whose objective is to process the noisy measurements and generate an 

estimate, g(t), of the true state vector of the system that is generating 

the data. Figure 2.2.2 shows in block diagram form the true system 

which generates the data and the general structure of the Kalman filter. 

The Kalman filter contains a mathematical model of the true system. It 

generates a predicted measurement vector, z(t), which is in some sense 

the best estimate of the actual measurement vector, z(t), generated by - 

the true system. By subtracting the actual measurements from the pre- 

dicted measurements one obtains the so-called residual (innovations) 

vector r(t). The residual vector is multipled by the Kalman gain matrix 

which in turn drives the differential or difference state equations that 

represent the model of the true system. In this manner the Kalman filter 

generates a vector, g(t), whose components represent the estimates of each 

and every state variable associated with the true system. 

If the mathematical model employed in the Kalman filter is an 

adequate representation of the dynamics of the true system, it is well 

known that the residual vector, r(t) has certain special properties. In - 

particular, the components of the residual vector will be white noise. 

One can calculate, off-line, the covariance matrix, 2, of the residual 
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DISTURBANCES 
$0) 

CONTROL 20) 
L 

INPUTS 
* 

TRUE SYSTEM KALMAN 
FILTER II) MODEL OF STATE 

0 
u(t) (AIRCRAFT) GAINS TRUE SYSTEM EST’MATES 

I 

g(t) PREDICTED MEASUREMENTS 

KALMAN FILTER 

Figure 2.2.2 General structure ofa Kalman filter. The weighted residual square (WE) 
signal m(t) is generated from the residual vector, r(t), of the Kalman 
filter by the quadratic form m(t) = r'(t)g'l,(t) where 5 is the covari- 
ante matrix of the residuals, m(t) in a scalar quantity. 
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vector L(t) given the mathematical model of the system and the statistical 

properties of the random processes which define the disturbances to the true 

system and the measurement noises associated with the physical sensors. 

For reasons that will become obvious in the sequel one can then process 

the residual vector, g(t), which is available in real time from the 

Kalman filter to generate a scalar quantity, denoted by m(t), which is 

called the weighted residual square (WRS) signal. The mathematical 

definition of the signal m(t) is as follows: 

m(t) A 5' (t)s15(t) > 0 (2.2.1) 

As the mathematical model of the true system used in the Kalman filter 

starts to deviate from the actual dynamic behavior of the true system 

which is generating the actual data, the residual vector, g(t), loses its 

"white" properties. Depending on the degree of modeling error the Kalman 

filter residuals become larger, correlated in time, and they may contain 

biases. Thus, by observing the time traces of the Kalman filter residuals, 

one can obtain a rough idea of whether or not the mathematical model used 

in a Kalman filter is a reasonable representation of the actual system 

dynamics. If the residuals are large, this is a clue that there is a 

mismatch between the actual system dynamics and the dynamics used to cons- 

truct the Kalman filter. 
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The residual covariance matrix, 2, is always a positive definite matrix; _. 

hence the weighted residual square signal, m(t), as defined by Equation 

(2.2.1) will always be a positive quantity. If the mathematical model 

used in the Kalman filter is a very good approximation to the true system 

dynamics, the Kalman filter residuals will be small, and as a consequence 

the scalar m(t) will also be small. On the other hand, if the mathema- 

tical model used to construct the Kalman filter becomes a worse approxi- 

mation to the true system dynamics, the residual vector will become larger, 

and as a consequence the WRS signal m(t) will beaome larger. Thus, 

the relative magnitude and stochastic behavior of the weighted residual 

square signal, m(t), as generated by any particular Kalman filter, pro- 

vides a clue to the degree of *-modeling error" between the true system 

dynamics and the mathematical model used to construct.the Kalman filter. 

Next, suppose that the designer does not have a good idea of the 

true dynamics of the physical system which is generating the actual data, 

z(t). In this case, from prior considerations, he may hypothesize that 

the true system dynamics will be close enough to one out of N possible 

models. In aircraft applications, the fact that the aircraft, as it flies 

throughout its flight envelope, changes its dynamic characteristics causes 

the true system that is generating the data to be unknown to the designer. 

The designer may postulate the existence of several possible dynamic models 

of the aircraft, where each model represents the aircraft dynamics at different 
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. . 
flight conditions. Suppose that somehow the designer has se&ted N 

different models for the possible description of the dynamics of the' 
. \ 

aircraft. In this case, as'illustrated in Figure 2.2.3;the designer 

can construct a bank of Kalman filters where each Kalmanfilter'is 
I 

driven simultaneously from the actual control vector, u(t), and the 

actual measurement vector, z(t). Each Kalman filter, indexed by 

i = 1,2,... ,N, utilizes a different dynamic model for its implementation. 

Thus each Kalman filter will generate a different estimate &(t) of the 

state of the system, and a different residual vector, xi(t). Furthermore, 

the covariance matrix Si of the residual vector zi(t) associated with each 

Kalman filter will be different, because different dynamics are used to 

implement each Kalman filter in Figure 2.2.3. The residual vector of 

each Kalman filter can be further processed to generate a different scalar 

WRS signal, mitt), for each Kalman filter. 

It should be intuitively obvious, that the differences between 

the WRS signals, mitt), will be strongly influenced not only by the dif- 

ference between the actual system dynamics and the mathematical models 

used in the bank of Kalman filters, but also by the control input, u(t), 

which excites both the true system and every Kalman filter. If',the'control 

input were sufficiently strong and excited all the significant dynamics 

of the true system, then the WRS signals mi(t) would be larger and hence 

the identification accuracy would improve. On the other hand, if the 

control input did not sufficiently excite the dynamics of the true system 
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Figure 2.2.3 Structure of a bank of N Kalman filters (see Fig. 2.2.2) 
that simultaneously generate state estimates, &(t), and 

the WRS scalar signals mi(t) that can be used for 
identification. 
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then the existence of the wind disturbances and sensor noises, would make 

it relatively hard to tell which model best matched the dynamics of the 

true aircraft. Thus, in an ideal identification experiment one would 

like to apply relatively large signals to the true system so"& to aid 

the identification accuracy. However, this may be completely against 

the requirements of the control system design, in which such large inputs 

are undesirable. 

From the above discussion, it follows that the time evolution and 

relative size of the different WRS signals mi(t), contain information which 

can be used to determine the approximate dynamics of the true system. On 

the other hand, this information is not in the most appropriate form for 

either a precise definition of identification, or purposes of ,adaptive 

control. Under certain assumptions, discussed in Chapter 4, the informa- 

tion contained in the WRS signals mi(t) can be transformed into a condi- 

tional probability that the dynamics of the true system are close to 

the dynamics used in each Kalman filter. 

2.3 Adaptive Control System Design by the MMAC Method 

This section contains an informal description of the adaptive control 

system design associated with the MMAC concept. First, the design of the 

control system in the case of perfect identification is presented; then 

the design of the adaptive control system is illustrated. Suppose that 

the dynamics of the aircraft at a particular flight condition are known. 

Figure 2.3.1 illustrates the block diagram of the overall stability 
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Figure 2.3.1 The general structure of the dynamic compensator or stability augmentation 
system (SAS) when the true aircraft dynamics are known so that matched 
Kalman filters and control gains can be computed. 
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augmentation system. The noisy sensor measurements, z(t), are used to 

drive a Kalman filter whose dynamics are matched to those of the aircraft. 

The Kalman filter generates an estimate, g(t), which is multiplied by a 

set of control gains, selected to provide appropriate handling qualities 

for that particular flight condition. These control signals are then 

combined with the pilot input signals in order to generate the control 

vector, u(t), that is the command signal to the aircraft control actuators. 

Figure 2.3.2 illustrates the structure of the overall multiple 

model adaptive control (MMAC) system. Using different models of the 

aircraft at different flight conditions, one designs the best stability 

augmentation system (SAS) for that particular flight condition. Each 

stability augmentation system would generate the optimal command control 

vector, si(t) to the aircraft under the assumption that the aircraft dy- 

namics were identical to that of the i-th model. Since each stability 

augmentation system (see Figure 2.3.1) contains a Kalman filter, the WRS sig- 

nals mi(t) are available and introduced to the probability evaluator, which 

in turn generates the probability, Pi(t), that the aircraft is in the i-th 

flight condition. To generate the actual commanded control signals, u(t), 

to the aircraft actuators one multiplies the optimal control signal for 

each flight condition, 21(t) by the probability, Pi(t),that the aircraft 

is indeed in that flight condition and one adds the resultant signals to 

actually drive the aircraft actuators. Mathematically this defines the 

control vector u(t) as - 
N 

u(t) = 1 Pi(t);;(t) 
i=l 

(2.3.1) 
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P,(t) 

&W J SAS 
1 

--) #N 
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u(t) = $ P+;(t) 
i=l 

N 
I 

I- 
N + . .# 

i 
MMAC Control 

Figure 2.3.2 Complete structure of MIIAC algorithm. Each SAS box is described 
by the functional diagram of Fig. 2.3.1 and generates the "optimal" 
control, u*(t), 

-1 
for a given flight condition. The actual control, 

u(t), applied to the aircraft is the weighted probabilistic avesage. - 
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&en the aircraft coincides with one of the models used in the 

construction of a particular stability augmentation system, the proba- 

bility associated with that model will eventually approach unity, so 

that the actual control applied to the aircraft will indeed be the op- 

timal control as calculated by the specific stability augmentation 

system. 

The overall performance of the MMAC scheme shown in Figure 2.3.2 

will be influenced by a number of factors. Obviously the number, N, of 

the models available will influence the response of the overall system. 

The identification accuracy will be influenced by the amount of excitation 

available either through natural turbulence, or pilot inputs, or arti- 

ficial persistent excitation (this was not used in this study). Ideally 

one would like to have as many models in the bank of the stability aug- 

mentation systems as possible. Since each model contains an internal 

Kalman filter, the real-time computational requirements of the MMAC algo- 

rithm will grow with the number of models. Thus tradeoffs between the 

effectiveness of the control system and the real-time computational 

requirements are necessary. 

This completes the overview of the adaptive control system design. 

The remainder of this report discusses how each and every block in the 

entire control system was designed, and presents typical characteristics 

of this adaptive control algorithm using nonlinear simulations of the 

aircraft. 
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2.4 Overview of-Remaining Chapters 

The purpose of Chapter 3 is to define the variables and the struc- 

ture of the differential equations associated with the longitudinal 

and lateral dynamics of the F-8 aircraft. In the approach used, the 

nonlinear differential equations describing the motion of the aircraft 

were replaced by a set of linear differential equations, one set for 

the longitudinal dynamics and another set for the lateral dynamics. 

The different operating conditions were defined by the altitude of the 

aircraft,its normal acceleration and its speed. This chapter also con- 

tains the dynamics of the actuators, the modeling of the wind disturbances 

as well as a description of the sensors used. The numerical values of 

the coefficients that appear in the linear differential equations of 

motion, for both the longitudinal and the lateral systems, are summarized 

in Appendix A. 

The purpose of Chapter 4 is to summarize the theory behind the MMAC 

algorithm which was the basic adaptive design methodology used in this 

study. Both the identification aspects as well as the control aspects of 

this adaptive algorithm are presented in this chapter. Additional 

theoretical backup is provided in Appendix C. 

The purpose of Chapter 5 is to summarize the LQG based design used for 

controlling the longitudinal system. In particular the philosophy and numerical 

values associated with the quadratic index of performance used to design 

the control system are indicated. The final quadratic performance index 
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penalizes a weighted combination of normal acceleration, pitch rate, and 

the time derivative. of the commanded elevator signal. Further, the 

Kalman filter design for the longitudinal system, using only the noisy 

measurements of pitch rate and normal acceleration, is presented. 

To incorporate pilot commands, the philosophy that the pilot only 

wishes to control the short-period dynamics was adopted. This chapter 

includes some simulations illustrating the operation of the pilot command 

system. The simulation results presented in this chapter represent the 

performance of the aircraft under perfect identification conditions; 

they serve as a bench mark for the subsequent adaptive control system 

simulations. 

The purpose of Chapter 6 is to discuss the development of the 

control system for the lateral dynamics. The methodology employed was 

that of explicit model following. The chapter contains a discussion of 

the different types of quadratic performance criteria tried out. The 

final criterion included tradeoff terms involving the lateral acceleration, 

roll rate, sideslip angle, bank angle, as well as the time derivatives 

of the commanded aileron and rudder signals. The chapter concludes with 

the presentation of several simulations carried out at different flight 

conditions, different initial conditions, with and without turbulence, by 

comparing the open loop response of the aircraft versus the closed loop 

response of the aircraft in the lateral system. These simulations for 

the lateral system serve as a bench mark for further comparison with the 

adaptive lateral system. 
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The purpose of Chapter 7 is to present the performance of the MMAC 

algorithm for several simulations at different flight conditions. Simu- 

lations were carried out both in the absence and in the presence of turbu- 

lence. Several combinations of models were included in these simulation 

results. This chapter also contains an extensive set of experiments whose 

purpose is to demonstrate the amount of information available for identifi- 

cation, the performance of the identification algorithm, and the performance 

of the adaptive,.control system as a whole under stick commands. 

The purpose of Chapter 8 is to describe a potential real time scheduling 

algorithm which is necessary in order to be able to carry out all the adaptive 

estimation, identification, and control algorithms in real time when the 

aircraft is flying throughout its entire envelope. This chapter describes 

a simple ad-hoc procedure that utilizes very gross altitude information, but 

no speed information whatsoever, in order to make a real-time decision about 

which subset of models are going to be used at each instant of time in the 

MMAC algorithm. This chapter includes selected simulation results of the 

MMAC algorithm as the aircraft undergoes piloted flight over large segments 

of its flight envelope. 

The purpose of Chapter 9 is to summarize the main conclusions reached 

under this study. 
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CHAPTER 3 

LINEARIZED AIRCRAFT EQUATIONS 

3.1 Introduction -- 

This chapter discusses the variables and equations which describe 

the aircraft behavior. As usual, lateral and longitudinal dynamics will 

be discussed separately. Based on these equations, decoupled longitudinal 

and lateral linear dynamic models of the aircraft are obtained at various 

flight conditions. 

3.2 Reference Flight Conditions 

Linearized models of the aircraft can be obtained about a number of 

equilibrium conditions. In this study, fifteen conditions were used, 

chosen throughout the aircraft flight envelope. Table 1.3.1 and Figure 

3.2.1 describe the fifteen flight conditions for which NASA/LARC provided 

linearized data. 

The flight conditions were characterized by altitude and Mach number, 

with dynamic pressure, trim, angle of attack and elevator position being 

specified as part of the flight condition. The true airspeed V. can be 

computed from 

vO 
= Mach no. X speed of sound (3.2.1) 

3.3 Longitudinal Systems Equations 

Table 3.3.1 contains a description of the variables which will be 

used in the linearized equations. The general form of these linearized 
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q= 415 Ib/ft* 
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12,191 M 

‘20,000 Fl 
6,095 M 
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.25 .5 .75 1 1.25 1.6 

MACH NO. 

Figure 3.2.1 Location of selected Flight Conditions of F-8C. 



3-3 

TABLE 3.3.1 

LONGITUDINAL VARIABLES 

State Variable 

Pitch rate 

Velocity error from 
trim 

Symbol Units 

q(t) radians/second 

v(t) ft/sec(met/sec) 

Angle of attack measured a(t) radians 
from trim condition 

Pitch attitude 

Elevator deflection 
from trim condition 

Commanded elevator 
deflection 

Wind disturbance 
(normalized) 

0 (t) 

Lse (t) 

radians 

radians 

bet (t) 

w(t) 

radians 

radians 

. 
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commanded 
elevator deflection 

8 ec 

a 
s+a 

actual 
elevator position 

m 
Be 

Figure 3.3.1 Actuator Model 



3-5 

equations is given by 

d 
xt I. = all a12 a13 0 

0 a22 a23 
is 

1 a32 a33 0 

1 0 0 0 
1 

6 e (3.3.1) 

Equation (3.3.1) describes the general form of 'the linearized air- 

craft, ignoring actuator dynamics and disturbances. The elevator deflec- 

tion 6 e is the output of an actuator 'driven by a commanded elevator angle 

6 ec' as illustrated in Figure 3.3.1, so that 

ie(t) = -a 6ec(t) (3.3.2) 

where a = 12 is the time constant of the hydraulic actuator. 

3.4 Wind Disturbances in the Longitudinal System - -- 

In modelling wind disturbances, the following power spectral density 

was used 121 

? L 
Qg = YE;- 4 

04+&l 
( 1 

2 

vO 

(3.4.1) 

where 0 w is the root mean square vertical gust velocity, L is the scale 

length in feet or meters, V. is the airstream velocity in ft/sec or 

m/second. Typical values of L and cw are shown in Tables 3.4.1 and 3.4.2. 

The wind disturbance with power spectrum described by Eq. (3.4.1) 

can be considered as the output of a first-order linear system driven 
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TABLE 3.4.1 

DEPENDENCE OF SCALE LENGTH L UPON ALTITUDE 

Height L 

0 ft (0 met) 

1000 ft (305met) 

2500 ft (762met) 

>2500 ft 062met) 

200 ft (61 met) 

1000 ft (305met) 

2500 ft C/62met) 

2500 ft (762met) 

TABLE 3.4.2 

NUMERICAL VALUES OF (S FOR W- 

DIFFERENT WEATHER CONDITIONS 

Condition 0 W 

normal 

cumulus 

thunderstorm 

6 ft/sec U.83met/sec) 

15 ft/sec (4.57 met/set) 

30 ft/sec (9.15 met/set) 

I I I 
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by a zero mean white noise input, c(t), as shown in Figure 3.4.1. The 

equation corresponding to this system is 

w" = -aw + E- Eit, 
vO 

(3.4.2) 

where 

E{~(t)~(s)) = 6(t-s) (3.4.3) 

and 6(.) is the Dirac delta function. 

Given the power spectrum of w(t) given by Eq. (3.4.l),by choosing 

vO a=2- L 

2uwvo K=-- 

(3.4.4) 

(3.4.5) 

one obtains Eq. (3.4.2). 

This normalized wind disturbance w(t) in the longitudinal dynamics has 

the same influence on the remaining state variables as an angle of attack 

perturbation. Hence, w(t) can be modeled as a state variable, and its 

effect on other state variables can be obtained from the previous linearized 

models. The linearized equations for the longitudinal system including wind 

effects and actuator dynamics are: 
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White noise K m/set radians 
* 

s+a 
l 1 D 

EW y(t) VO w(t) 

Figure 3.4.1 Normalized Wind Disturbance Generated by 
White Noise Input c(t) 
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d 
dt 

q(t) 

v(t) 

a(t) 

8 (t) 

ie (t) 

w(t) 

kl 

0 

1 

1 

0 

0 

0 

0 

0 

0 

12 

0 

a32 a33 

0 0 

0 0 

0 0 

6ec(t) + 

K 

vo 

bl al3 

b2 a23 

b3 =33 

0 0 

-12 0 

0 -a 

q(t) 

v(t) 

a(t) 

0(t) 

6e (t) 

w(t) 

S(t) (3.4.6) 

which is of the form 

i(t) = A x(t) + g 6,&t) + L<(t) -- 

Appendix A contains a complete list of the coefficients of the A, B, and 

&matrices for each flight condition. 

3.5 Sensor Measurements in the Longitudinal Dynamics 

The F-8C aircraft has noisy sensors which provide the measurements 

described in Table 3.5.1, which includes the variances of the measurement 

noise. 
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TABLE 3.5.1 

NOTATION FOR NOISY LONGITUDINAL SEZJSORS 

Sensor Measurement equation rms error 
: 

pitch rate 

velocity error 

pitch attitude 

elevator angle 

normal acceleration 

2 
q =:++q 

z V =v+tl v 

53 = 0 + 'I8 

26 e 
= 6e + '16 

e 

=az = an + rla 
2 1; 

.489 deg/sec 

.6096 m/set 

.2 deg 

.1 deg 

.06 g's 



X - z=c - -. 11 +I 
W 

!: 

1 
I t* ,! ! 
1; 
I! 

The quantities ?I 
q 

, n,, rig, n6 and n a represent additive white 

I[ 

e Z 

i 
measurement noises associated with the sensors. The dynamics of the-sensors 

;,; 
'i 
1' are modeled as unity gain transfer functions with no phase dynamics. The 

linearized measurement equations can be modeled as 

; 

where 

z= - 

. 

L J 

z6 
e 

Z a Z 
- 

‘X - 
= 

W 

, 5’ = 

- 

(3.5.1) 

where C is a matrix, and z(t) is the measurement vector. - 

Since q,v, 8 and 6e are already state variables, there is no problem 

obtaining the linearized matrix C for the first four measurement equations. 

The fifth measurement, normal acceleration, is defined as: 

vO a =- 
n (q - k - pB) - cosecos~ 

Z g 
(3.5.2) 

where V o is velocity, g is the gravitational constant, p, 6, and 9 are 

variables in the lateral system, respectively roll rate, sideslip angle 
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and bank angle, and the remaining variables are longitudinal variables. 

Equation (3.5.2) is a-nonlinear equation which couples, lateral and longi- 

tudinal variables. A way of linearizing and decoupling this observation 

equation is discussed in Appendix D. The resulting linearized equation 

for normal acceleration is 

“0 a =-- 
n (-a32v - a33ct - b36e) 

Z (3 
(3.5.3) 

3.6 Reduced Dynamics for the Longitudinal System 

The longitudinal models discussed in the previous sections contain 

state variables which have intrinsically different time constants. Vari- 

ables such as velocity and flight path angle change slower (phugoid mode) 

than variables such as angle of attack, pitch rate, wind disturbance and elevator 

deflection. The latter variables represent the variables used in describing 

the short period dynamics of the aircraft. Models of the short-period 

longitudinal aircraft dynamics can be expressed as: 
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d 
dt 

9 

a 

Is e 

W 1 = 
+ 

all 

1 

0 

0 

0 

0 

12 

0 

6 + ec 

bl 

b3 
-12 

0 

0 * 

0 

1: 
5 (t) 

0 

K 

% 

al3 

a33 

0 

-a II 
9 

a 

6 e 

W 

h 
%ed +B --red 6ec(t) + sea E.(t) (3.6.1) 

where the elements of sed have been indexed to identify them with elements 

of & in Eq. (3.4.6). 

The measurement equations remain essentially the same as were dis- 

cussed in Section 3.5. Available measurements in terms of the short-period 

variables are pitch rate, normal acceleration and elevator position. Since 

velocity is assumed to be constant in the short-period dynamics, the equa- 

tion for normal acceleration (Eq. (3.5.3)), now becomes 

vO a =-- 
n (-a33a - b36e) 

Z g (3.6.2) 
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Appendix B contains a complete list of the reduced order longitudinal 

models for the fifteen flight conditions. 

3.7 Linear Models of the Lateral Dynamics 

Table 3.7.1 c0ntains.a description of the variables used in the 

lateral dynamics of the aircraft. Using these variables, the linearized 

equations are of the form " 

d 
dt I I = %at 

P 

r 

B 

'Q 1 + Elat 

6 a II mL 6 r 

(3.7.1) 

where the matrices A -1at and B -1at are coefficient matrices obtained for each 

flight condition. The numerical value,s of these matrices were supplied by 

NASA/MC . 

The actuator dynamics for the aileron and rudder actuators are modeled 

as first-order lags. In this study, the time constant for aileron actuators 

was equal to 30, and for rudder deflection, equal to 25, so that the 

differential equations which govern aileron and rudder deflections are: 

& 6a = -306, + 306 a 
C 

(3.7.2) 

& dr = -256r + 256 r 
C 

(3.7.3) 

Wind disturbances in the lateral system are modeled by the same gust 

spectrum discussed in Section 3.4. For the lateral system, one (normalized) 



3-15 

TABLE 3.7.1 

LATERALDYNAMICSVAR.IABLES 

Variable Description SYnlbol units 

roll rate P(t) rad/sec 

yaw rate r(t) rad/sec 

sideslip angle B (t) rad 

bank angle 4 (t) rad 

aileron angle (asymmetric) 6. (t) rad 

rudder angle 6r(t) rad 

commaed aileron angle 6,dt1 rad 

commanded rudder angle 6, (t) rad 
C 

normalized wind turbulence w(t) rad 
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unit of turbulence w(t) has the same effect as a change in sideslip angle 6. 

The equation for wind disturbances can then be written as 

i(t) = -aw(t) + K E(t) 
vO 

(3.7.4) 

where c(t) is a white noise process of unity variance and a, K, have the 

values given in. equations (3.4.4) and (3.4.5). Incorporating the effects 

of wind disturbances and actuator dynamics, the complete models of the 

lateral system of the aircraft are of the form: 

d 
dt 

+ 

r 

6 a 

6 r 

W 

0 

0 

0 

0 

30 

0 

0 

0 

25 

0 

. - al3 

. 
%at %at 'a 23 . . 

. . a33 

. . 
0 0 -25 0 - . . 

. 0 0 . -a 

r --I 

0 

0 

0 

0 

0 

0 

K 

vo 

s(t) 

P 

r 

B 

6 a 

6 r 

W 

(3.7.5) 
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3.8 Sensor Measurements in the Lateral System - 

The set of lateral sensors used in the study is shown in Table 3.8.1. 

All but the first variable in Table 3.8.1 are state variables in the lateral 

system model, hence linear observation equations can be defined trivially 

for almost all measurements. For the first measurement, lateral accelera- 

tion is defined as 

“0 ay(t) = g- (f3 + r - pcl) - sin+cosO (3.8.1) 

where V 0 is the airplane velocity, g is the gravity constant, and the 

other quantities are longitudinal and lateral state variables. Equation 

(3.8.1) is a nonlinear equation, using coupled dynamics for the longitu- 

dinal and lateral systems. How this equation is linearized is discussed 

in Appendix D. The resultant linear equation is 

"0 
aY 

= 4 (B + r - pcCo) - 4 (3.8.2) 

3.9 concluding Remarks 

In this chapter we presented the general structure of the linear 

differential equations that describe esquilibrium flight for the F8-C 

aircraft for both longitudinal and lateral motion. In addition, the 

sensors and their accuracies were described. 



3-18 

TABLE 3.8.1 

NOTATION FOR LATERAL SENSORS 

Sensor Symbol Equation rms errors 

Lateral acceleration 'a z, =a 
Y y 

+ rla .15 deg/sec 
Y Y 

Roll rate 
=P 

z =p+rlp .15 deg/sec 
P 

Yaw rate 'r z .15 deg/sec 
r 

=r+q r 

Aileron angle 

Rudder angle 

Bank angle 

'&a "6 .l deg 
a 

= 6a + T-l6 
a 

%r =6 = 6r + n6 .l deg 
r r 

=+ =4 
= 9 + n$ .2 deg 
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CHAPTER 4 

THE MULTIPLE MODEL ADAPTIVE CONTROL (MMAC) ALGORITHM: THEORY 

4.1 Introduction - - 

This chapter discusses the theory behind the MMAC algorithm, as a 

sampled-data control system for the F-8C aircraft. The two main parts 

of the algorithm are identification and control. The basic assumptions 

which lead to the development of a control system are reviewed, emphasizing 

potential areas of difficulty. Since the MM&C algorithm is a sampled 

data control system, all dynamic equations will be written as discrete-time 

difference equations. 

4.2 Problem Formulation 

Consider a linear discrete-time stochastic dynamic system whose 

dynamics depend on a constant parameter vector Y by the following difference 

equation 

x(t+l) = &(Y)x(t) + g(y)g(t) + &(y)5(t) (4.2.1) 

where x(t) represents the state vector, - u(t) the control or input vector, 

and h(t) is a zero-mean, stationary discrete white gaussian noise sequence 

with known covariance matrix !. . The vectors x(t), u(t) and e(t) are as- - - - 

sumed to be elements of finite dimensional Euclidean spaces, with the ma- 

trices A, B, 4 appropriately dimensioned. The assumptions on the noise 

vector L(t) can be expressed as 

E@t)} = 0 for all t (4.2.2) 
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E(h(t)E' (S)) = 56 (t-s) (4.2.3) 

where 6(.) is the Kronecker delta function defined as : 

6(t-s) = 1 when t = s 

(4.2.4) 
6(t-s) = 0 if t # s. 

Additionally, there are stochastic measurement equations defined on the 

system, which may depend on the parameter y as follows : 

z(t) - = C(y)x(t) + g(t) (4.2.5) 

In Eq. (4.2.51, _ z(t) is the actual measurement vector at time t, an element 

of a finite-dimensional Euclidean space, and C is an appropriately dimen- 

sioned matrix; the vector g(t) represents measurement noise, and it is 

assumed to be a stationary, zero mean, discrete Gaussian white noise 

sequence, independent of i(t). That is, 

E@(t) 1 = 0 (4.2.6) 

E{~(t@'(s)) = @(t-s) (4.2.7) 

E@(t)i'(s)) = 0 (4.2.8) 

g>g for all t (4.2.9) 

The last assumption (4.2.9) implies a positive definite noise covariance 

for all time. 

Consider now the parameter vector 1. It is assumed to be an element 

of a finite-dimensional space. The degree of accuracy by which the elements 



4-3 

of y_are known depend upon the accuracy of the modeling process. The 

MMAC algorithm considers y as a random vector, about which certain a priori 

information exists. All prior information about 1 can be captured in its 

prior probability density function, denoted by p(y). 

It is clear that the numerical values of the parameter vector y would 

alter the system dynamics, and influence both the control gains and Kalman 

filter gains. Thus, the problem of obtaining estimates of 1 from the 

actual noisy sensor measurements is important. 

In aircraft applications in general the parameter vector 1 would cap- 

ture all underlying variables, such as dynamic pressure and configuration 

changes, which would crucially affect the linearized aircraft dynamics 

under equilibrium flight. The MMAC method then assumes that these crucial 

parameter values cannot be measured directly, but rather they have to be 

inferred from noisy sensors. 

4.3 Identification and Estimation ~_._..-_. 

Under the assumption that both y and x(t) are random variables 

belonging to finite dimensional Euclidean spaces, successful control of 

the system described by Eq. (4.2.1) depends on accurate identification of 

the value of y and accurate estimation of the state x(t), on the basis of 

the noisy measurements. Several algorithms, notably the extended Kalman 

filter [22], [23] exist which can be used to approach the joint problem 

of estimation and identification. However, in the presence of large para- 

meter uncertainties, even these sophisticated algorithms break down. A 

different approach, based on additional assumptions is needed; the MM7sC 
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approach was used exclusively in this study. In order .to handle the un- 

: certainty in the parameter vector 1 assume that its parameter space can be 

quantized (divided) into a finite number of regions, each region represented 

by a specific parameter value 1,. That is, 1 suppose that there are N 

vectors yl, y,, . . . . r, chosen throughout the parameter space. pdditionally, 

assume that the true value of y is one ,of these N values for all time. 

Effectively, by the above assumptions, the parameter space is being reduced 

to a finite set. Needless to say, the above assumption is not true in 

real situations. This point will be discussed later on. 

Under the assumptions stated above, equations (4.2.1) and (4.2.5) 

can be rewritten 

x(t+l) = ail + ail + ki5(t) (4.3.1) 

z(t) = q+(t) + 8 (t) (4.3.2) 

where i = 1, 2, . . . . N, using the obvious notational abbreviation 

A. 4 A$), B 
A 

-1 -i 6 gyil, si = CCyi) I pi = L(yi) 

The a priori probability density of 1 can now be stated as p(y) = 

my+ ply,), . ..I P(yN))' The problem of parameter identification can 

be viewed as a hypothesis testing problem, in which there are N hypotheses 

Hi' where the random variable H is such that 

H-H i if y=yi (4.3.3) 

Initially, all the information which is known about the system is 



4-5 

given in p(Y). Define the initial probabilities Pi(D) by 
, 

Pi(O) 6 P(y 4 P(H = Hi). 
I . 

i 
) ,(4.3.4) 

.- .I ..I 
Suppose one applies a sequence of deterministic inputs,u_!O), ,u_(l),..., 

. 
u(t-1) to the system, and obtains measurements z(l), ~(2), . . . . z(t). I_ 

The problem at hand consists of using 

a good estimate of the state z(t) and 

mation (data) set of time t, Z(t), as 

z(t) = {z(l), z(2), ...I z(t), u ,( 

these measurements to provide both ., 

the parameter 1. Define the @for- ^' I 

follows: 
i. I 

0) I u(l), . . . . u(t-1)) (4.3.5) 

Additionally, define the conditional probabilities 

Pi(t) = Prob. (H = H&Z(t)). (4.3.6) 

Thus, the posterior probability density of the hypothesis variable H given 

the measurements Zft) is given 

p(HIZ(t)) = 2 
i=l 

Pi(t)G(H - Hi) (4.3.7) 

where 6(.) is the Dirac delta function. The joint estimation and identifi- 

cation problem consists of determining the probability densities and condi- 

tional expectation p(H(Z(t)) and'E(x(t)IZ(t)). 
:.. ., 

- 

Fisure 4.3.1 contains a summary of the svstem and-identification 

problem. Aooendix C contains a derivation of the exoressions for the 

conditional orobabilitv densities of H and x(t). - As shown in Appendix C 

these conditional Drobabilities can be calculated in real time in a recur- 
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u(t) 
d- - 

CONTRDL 
INPUT 
VECTOR 

DYNAMIC SYSTEM 

x( t+u = A+(t) + J+(t) + r+(t) 

z(t) = k+(t) + g(t) - 

z(t) = C?#), . .., z(t), u(O), . . -, gt-1)) 

H = Hi CT-: > y 
- = yi 

Estimation problem: find g(x(t) (Z(t)) - 

Identification problem: find P(HIZ(t) 1 

NOISY SENSOR 
MEASUREMENT 
VECTOR 

Figure 4.3-l The Nature of the Joint Estimation and 
Identification Problem 
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1 sive manner, using Bayes' rule 161, [=I 

p&(t) (Hi,E(t-l), u(t-1)) 
pi(t) = T.~ ~-~ 'i(t-1) (4.3.8) 

xp(&t) lHj, Z(t-l), u(t-l))Pj(t-1) 
j=l 

g(t) 4 Eb+) IZ(t)} = 5 Pi(t)E{x(t) IE(t) 
i=l 

, Hi), " (4.3.9) 

C, the probability densities.involved in the 

(4.3.8) and $.3.9) are Gaussian, because 

As explained in Appendix 

ri'ght-hand sides of equations 

when hypothesis H i is assumed 

linear, time invariant, Gauss 

expected value g?(t) = E{?(t) 

true, the system in Figure 4.3.1 becomes a 

ian-driven system. Furthermore, the conditional 

Izw I Hi} can be constructed by a linear 

time-varying Kalman-Bucy filter 151, [61. 

The basic formulae of Kalman filters are well known. From each 

Kalman filter, indexed by i = 1,2,..., N, one obtains the value of the 

corresponding residual vector Ki(t), defined as 

qt) i z(t) - -l C.E{x(t) I'(t-1) I u(t) I Hi'. (4.3.10) 

Additionally, the covariance matrix of the residual vector gi(t), defined 

as Si(t), can be computed off-line. With this nomenclature, Equation (4.3.8)is 

shown in Appendix C to give 

p(z(t+l)lHi,#,E(t)) Pi(t) 
Pi(t+l) = N 

c p(z(t+l).lHj,'&(t),E(t)) Pj(t) 
j=l 

(4.3.11) 
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Bitt+11 e 
-$ (L;(t+l)$(t+l)r(t+l)) 

= (4.3.12) 

-5 8, (t+l) 
$ 

e 
(gi(t+l)$(t+l)Ij (t+l)) 

Pp' 

j=l 
PjW 

where the scalars Bi(t) are defined by 

m 1 

[det gi(t) 1 
-7 , i = 1, 2, . . . . N : (4.3.13) 

and m is the dimension of the vector r(t), (m is equal to the number of 

measurements). The matrices S(t) and the scalars Bi(t) can be computed 

a priori in an off-line fashion as described in Appendix C. Using equa- 

tions (4.3.12) and(4.3.13) in conjunction with N Kalman filters, asdes- 

cribed in Figure 4.3.2, one is able to compute the -evolution of the hypo- 

thesis probabilities and the conditional expected value of the system 

state. 

Because of the stationarv properties of the time svstem, one can 

consider the operation of the svstem in steadv state. In this case, the 

residual covariance matrix is stationary, so that the matrices S i and the 

scalars (3; are constants, as described in Appendix C. The system probabi- 

lities in steady state operation are given by 

B; exp( 
Pi(t) = N 

-h' (t)gilzi(t) 1 2-i 
(4.3.14) 

CL j=l 
f3; exp(-%!(t)S. 

Pi(t-l) 

2-l 
-'r (t))Pi(t-1) 

7 -j 1 
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Figure 4.3.2 Multiple Model Identification and Estimation. 
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Equation (4.3.14) can be written in a somewhat simpler form by defining 

the weighted residual signals (WRS) mi(t) as follows (see Fig. 4.3.3) 

mi(t) p $. (t)syl;i(t), i = 1,2,...,N (4.3.15) 

It should be stressed that each WRS mi(t) is a scalar cuantitv. and each 

is generated bv a Kalman filter (later chanters show several time his- 

tories of the WRS mi(t)). 

Using this notation, the formula for the probability update (4.3.14) 

can be written as 

Pi(t) = N 
f3; exp {- $mi(t)l 

PiGA) 

c 
j=l 

B; expf- $mj(t)~ Pj(t-l) 

(4.3.16) 

4.4 Discussion of Identification 

The MMAC identification algorithm has some interesting asymptotic 

properties. Hawkes and Moore [24] have established that, under general 

conditions and the assumptions of the previous section, the model probabi- 

lities are such that 

Pi(t) + 0 if H # Hi 

(4.4.1) 

Pi(t) -+ 1 ifH=H i (true model) 

as t -t 00. This is true only if the true model is in the set of hypotheses. 

Consider the equation describing the evolution of the probabilities 

pp, equations (4.3.1). With some algebraic manipulation, one obtains 
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N 
Pi(t) - Pitt-l) = 

[ 

CPj(t-1)q3 e 
+ 5; (t)$g j'"' -I. 

j=l 1 . 
Pitt-l) L r! (t)silri(t)- (l-Pi(t-l))B*i e 2 --1 c pj (t-1) 13; exp(- $ g; (t)qlfj (t)) 

j#l I 
(4.4.2) 

Heuristically, one expects that, as the system is subject to persis- 

tent excitation, the residuals of the true model Kalman filter, nominally 

the Rth one, will be small, while the residuals of the mismatched Kalman 

filters (i#R , i = 1,2 ,...,N) will be large. Thus, if R indexes the 

correct model, one has 

all i # R (R:true model) (4.4.3) 

If this condition persists, it implies that 

Hence, the correct probability will grow as 

(4.4.4) 

PR (t) 
PR(t-1) (l-PR(t-1))13?exp(-Z_II 

- Pll(t-l) = y----- 
' r' (t)gilLg (t)) 

> 0 (4.4.5) 

C Pj(t-1)8* exp( 
j=l ll 

-$ q (t)'+~ (t) 1 
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For the incorrect models, the same assumptions yield 

-Pi(t-l)PR(t-l) B& 
Pi(t) - Pi(t-l) = N----- < 0 (4.4.6) ,_ -1 1 Pj(t-1)83 exp( 2 r'(t)S 

j=l 2 -j r.(t)) 
-j -I 

Hence, assuming that the Kalman filter residuals will behave as expected, 

the identification scheme will converge to the true model. However, when 

the Kalman filters do not possess these regularity assumptions, the identi- 

fication scheme does not work well. For instance, consider the case that, 

in a prolonged sequence of measurements, the residuals zj(t) turn out such 

that 

r"(t)S -1 
-1 r (t) = r;(t)gilr,(t) -1 -1 . . . e S;(t)s&(t) 

Under these conditions, equation (4.4.2) becomes 

Pi(t-l) c (B;-B;)Pj(t-l) 

Pi(t) - Pi(t-l) = --- -2&!--- 

2 
j=l 

BfPj(t-l) 

(4.4.7) 

(4.4.8) 

Consider the largest @?, indexed as k. Then equation (4.4.9) indicates that 

PkW - Pk(t-1) is always positive unless Pk(t) = 1. Thus, the identifi- 

cation converges to the system whose (33 value is the largest, not neces- 

sarily the true system. Since the $: values are determined a priori from 

design parameters (as indicated in Appendix C), this behavior must be con- 

sidered in the design of the Kalman filter. 

A typical situation when equation (4..4.7) holds true is when the true 
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system is at-rest (,i.e., x(t) = 0) and the excitation of the system, c(t), - 

is actually much smaller in covariance than the modeled covariances. In ' I 

this case, all of the residuals Ki(t) will be essentially zero, satisfying 

equation (4.4.7) and give rise to the $* dominance identification 

effect. The implications are that this effect can occur in the absence 

of significant excitation of the system, or when the Kalman filters are 

designed for a much larger process noise h(t) than is actually encountered 
: 

in the true system. 

When the value of the true parameter -J is not included in the finite 

parameter set Iy 
-3’ l **’ 

~1. Hawkes and Moore [24] showed that the nroba- 

bilities converge to the "nearest" element of the set. That is, 

P.(t) -f 1 .::1 if and only if d(y, ~1 5 d(yl yj) (4.4.9) 

for all j = l,...,N. 

The distance between two parameters is defined in terms of the Kullback 
;.. 

[251 information measure, as discussed in [241. 

However, the theoretical proofs of convergence for the MMAC algorithm 
1 

have neglected two fundamental aspects of the physical problems connected 

with adaptive control: the convergence proofs have all dealt with undriven, 

open loop systems. In reality, the identification algorithm must operate 

within a closed-loop system, where inputs based on measurements are applied 

: to the system. The question of convergence under closed-loop conditions has 

not been addressed in the literature. 

The second aspect which has been neglected in the literature is the 

assumption that 1 is constant. In many adaptive systems, y is a tinieivarying 
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hypothesis. Some preliminary studies by Athans and Chang [26] indicidte 

that performance of the identification algorithm is closely related to 

the time-scale of the parameter variations. 

4.,5 The MM?K Algorithm: Control Approach 

In Section 4.3, the MMAC identification algorithm was used to ob- 

tain the probabilities Pi(t) for any string of inputs applied to the s:rstem. 

However, the objective of the control svstem is finding the control irqluts 

to the system. The basic approach follows the outline of hypothesis 

testing described in Section 4.3. 

Under the assumption that hypothesis Hi was true, the system @qua- 

tions become 

Ei(t+l) = Azi(t) + &s(t)'+ Lg(t) (4.5.1) 

z(t) = q+) + g(t) (4.5.2) 

Assuming perfect knowledge of the state dynamics and measurement 

equations, the optimal control zi(t) can be computed for each model 

indexed by i. This is accomplished through the solution of a Linear- 

Quadratic-Gaussian optimization problem 151, as described in Appendix F. 

The optimal control u(t) is obtained by linear feedback of the condii:ional 

expected value of x(t) for each model 

Qt) = -Q&w (4.5.3) 

where G -i is a constant control gain matrix and &(t) is obtained from the 

Kalman filter matched to the i th model. 
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The optimal control xi(t) can be computed .in parallel for each hypo- 

thesis (model) indexed by i = l,...,N. The MMAC control approach is then 

very simple: the individual control inputs are combined in a weighted 

average using the identification probabilities. That is, the actual 

control applied to the system is given 

N N 
g(t) = CPi(t)q(t) = - c Pi(t)&(t) 

i=l i=l 
(4.5.4) 

The complete control and identification scheme is shown in block diagram 

form in Figure 4.5.1. 

Willner [181 established using dynamic programming that the control 

law obtained using equation (4.5:4) was optimal in minimizing a quadratic 

cost criterion only,over a single time step. That is, when the system 

dynamics and the horizon of the cost criterion is larger than one time 

period, the MMAC controller is a suboptimal control, even when all other 

assumptions discussed in Section 4.3 still hold. Hence the MMAC control 

algorithm represents a COmPUtatiOnally simple suboptimal adaptive approacl 

towards control of the F-8C aircraft. It must be emphasized that there 

is no theory guaranteeing the success or performance of this approach; 

this is a major motivation for extensive research into the feasibility 

of this approach. 

4.6 Modification of the MMAC Algorithm 

The theory behind the MMAC design deals with identifying and con- 

trolling a system represented by a linear time-invariant finite dimensional 
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mathematical model. The F-8C aircraft is a non-linear, time-varying 

plant which is subjected to a variety of pilot commands. Several modifi- 

cations of the MMAC design were introduced to compensate for the differences 

between the theoretical assumptions behind the MMAC and the true properties 

of the F-8C aircraft. One of the crucial questions dealing with the 

convergence of the identification algorithm is the availability of infor- 

mation 1241, [7] to separate the various hypotheses. Sources of information 

include pilot commands, turbulence, gusts or other types of excitation. 

Some studies in adaptive control of aircraft [27] include a low intensity 

test signal designed to provide information to the identification system. 

The basic MMAC algorithm includes no such signal; thus, when the MMAC 

lacks information, the identification system will have difficulties identify- 

ing the right hypothesis. This occurs when the aircraft is trimmed, 

flying at equilibrium level flight under no turbulence. Under such circum- 

stances, the @* dominant identification effect mentioned in Section 4.4 occurs. 

It should be noted that the B* dominant effect was not known when this 

study commenced. It was observed in simulations and in the absence of any 

theory, led to ad - hoc modification of the MMAC System. -- 

In order to compensate for the fl* dominant effect, one can modify the 

evolution of the identification probabilities Pi(t) described in equation (4.3.16) 

According to equation (4.4.7), the B* dominant effect occurs when all the WRS 

signals mi(t) are near zero. The modification consistsof stopping the 

identification algorithm when there is not enough information. The MMAC 

algorithm monitors all of the mi(t), and updates its identification probabil- 

ities as 

Pi(t+l) = Pi(t) if mi(t) ( TU, i = l,...,N (4.6.1) 
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-milt) 

Pi(t+l) = B*i Pi (t)e 

F B*j Pj(t)e-mj!t) 

otherwise. 

j=l 

The values of the thresholds TH were determined by trial and error. 

values used in the designs were: 

Longitudinal System Threshold = 1 

Lateral System Threshold = 5 

(4.6.2) 

The 

(4.6.3) 

Notice that there are two separate thresholds for the longitudinal 

and lateral systems. The MMAC algorithm contains separate identification 

and control systems for the longitudinal and lateral systems. In principle 

the information provided by the two systems could be combined to improve 

identification. Under the assumption that the longitudinal and lateral 

systems are completely decoupled and uncorrelated, the identification 

probabilities can be combined, according to the following equations. 

Let S -i LON'% L&T denote the residual covariance matrices of the 

Kalman filters, for the i-th flight condition, associated with the longi- 

tudinal and lateral dynamics respectively. Define 

-%ON 
-l/2 

Bi*LON = (2T9 2 (det gi LoN) 

-%AT -l/2 
Bi*mT = (27T) 2 (det gi LAT) 

(4.6.4) 

(4.6.5) 

where m LON andm LAT are the number of longitudinal and lateral sensors. 

Let ~~ ,,,(t) and gi LAT (t) denote the Kalman filter residual vectors 
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at time t, for flight condition i, associated with the longitudinal and 

lateral dynamics respectively. Define the WRS signals: 

In i mNw 2 z-i 

A 
m. 1LA 

= r! 
-1 

LoNwg;l LON %  LONlt) (4.6.6) 

,,w ST1 -1 LAT %  LATtt) (4.6.7) 

Then the overall probability that the aircraft is in flight condition i 

at time t, is generated by the recursive formula 

pi(t) = pi (t-l) fi;LoNf?,T exp{-m iLoN (t)/2)exP{-m i mT(t)/21 / 

Pj (t-l)B*. ,LONB;LAT expt-m 
j=l 

jLAT(t)/21 =d-mj ,,(t)/2) 
(4.6.8) 

The @*  dominance effect discussed above now refers to the relative magnitude 

of 

(4.6.9) 

obviously the method should be expected to work well when both longitudinal 

and lateral Kalman filters are correctly designed so that the residuals 

of the "matched" Kalman filters are smaller than those of the "mismatched" 

ones. 

The reason the MMAC algorithm does not combine the lateral and 

longitudinal identification probabilities lies in the differences between 

the mathematical assumptions and the actual problem posed by the F-8C 

aircraft. Throughout most of the flight envelope the linearized equations 

of the F-8C aircraft will differ from all of the hypotheses in the MMAC 

algorithm. In this situation, it is not clear that combining the information 
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will improve the overall identification. In many cases, one can observe the 

information obtained in one system dominating the overall identification. 

Section 7.3 contains the mismatched stability tables showing the effects 

of erroneous identification on the stability of the aircraft. A close 

examination of these tables will show several combinations which are stable 

in one system, say longitudinal, and unstable in the other system. 

Should the information from the longitudinal system dominate the identifi- 

cation schemes are used, each system can quickly recognize when the air- 

plane is unstable and alter its identification. Figure 4.6.1, shows 

typical aircraft responses with identification. Note the instabilities 

in the lateral system variables. 

One final modification was made in the MMAC identification algorithm: 

the identification probabilities Pi(t) were bounded away from zero. In 

principle the identification algorithm is trying to identify a fixed', 

time-invariant hypothesis;in actual practice, this hypothesis changes with 

time as the F-8C aircraft travels through its envelope. Thus, the MMAC 

algorithm must be able to react to a time-varying true hypothesis. Bound- 

ing the probabilities away from zero corresponds to limiting the importance 

of past information, enabling the identification system to react quickly to 

new information. Trial and error established these lower bound to be 10 -4. . 

Hence, the updated identification probabilities were modified as follows: 

T??(t) = Pi(t) if Pi(t) > 10 -4 (4.6.10) - 

= 10-4 otherwise 

The modified identification probabilities, denoted by P:(t), were 

obtained by 

P;(t) = (4.6.11) 
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One of the undesirable properties of the MMAC identification algorithm 
* 

is its sensitivity and quick response to information. When the airplane 
, 

is subjected to high levels of turbulence, the randomness of this turbulence 

is reflected in the identification probabilities. Figures 4.6.2 and 4.6.3 

represent typical airplane responses under various levels of turbulence. 

Notice the fast tranSitiOIX5 in the identification probabilities Pi(t). Each 

transition, however, changes the feedback gains in the control system, thereby 

changing the aircraft response to pilot inputs. These transitions occur 

under turbulence, or when two or more hypothesis are equally "close" in a 

probabilistic sense to the true aircraft. The net result is a control system 

which feels very uneven to the pilot. In order to smooth out the changes 

in the control system and to eliminate some of the random effects in the 

identification, the identification probabilities were low-pass filtered to 

produce control probabilities; trial-and-error experiments set the filter 

time constant at 2 seconds. Figure 4.6.5 describes the low-pass filter 

introduced. The control probabilities are given by 

P;(t) = .94041 PF(t-1) + -05959 P;(t) (4.6.12) 

Figure 4.6.5 shows the control probability evolutions using the low-pass 

filtering scheme to smooth out the control action. 

* 
These important sensitivity properties were not known when this study 

was initiated. In point of fact, the overall nonlinear nature of the MM?NZ 
System (Figure 4.3.2) precludes any analytical insight. Thus, extensive 
stochastic simulations are necessary to evaluate any MMAC design. 
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no turbulence, altitude 6096 meters, speed -6 Mach, 
using combined identification 



4-24 

TIME(seconds) TIME(second) 

;.. 
SKJESJP 

PRO2mllJN 
OF 

MODEL IO 

L emx I 
ANWE 
(dq) ' '. 

- 
. . . 

,. 
LATER&- PROBAFILIN 

ACCEL 
(!J’I) 

MODEL 17 

._ 
._ 

Fig&e 4.6.2 Air&aft resporises to 6Oa , 2"f3 initial.'gusts, .I 
4.57 m/seqxms turbulence, altitude 6096 meters, " ., 
speed .6 Mach, displaying identification probabilities 



t . i $ g ,i 9 :: i’l ii 
II, 

:I ‘: . l 
8 0 
. 
8 
b 
0 
. 
8 
b 

..j L+L 

FLIGHT CONDITION 
\ 
\ 

-10 
m-m- 19 

o-12 
. . ..*a17 

TIME bed 

Figure 4.6.3 Longitudinal system identification probabilities, 
altitude 6096 meters, speed .6 Mach (P.C. 111, 
4.57 q/set rms turbulence 



4-26 

0 
0 

0 

+ LOW PASS r 

Figure 4.6.4 Description of Low-Pass Filtering Approach 



616 

i 

FLIG~~T CONDITION 
-10 
mm-. 19 

-- 12 
#.@*a17 

b b b b . b . b b 0 b 0 0 
: 

.a 
b- 

. 
. 

. 
b 

0 
b 

. 
. 

0 
b 

. 
. 

l 
b 

b 
. 

0 

-e 
‘b . . . ..b” 

b 

2 3 

. 

5 
TIME h,) 

Figure 4.6.5 Longitudinal system control probabilities, 
altitude 6096 meters, speed .6 Mach (F.C. 111, 
4.57 m/set rms turbulence 



5-l 

CHAPTER 5 

LONGITUDINAL AXIS CONTROL AUGMENTATION SYSTEM 

5.1 Introduction 

This chapter describes the specific development of the control 

designs for the longitudinal dynamics for the fifteen flight conditions. 

In addition to discussing the development stages, sample simulations of 

the final design are included at various operating conditions, to illus- 

trate the operation of the control system. 

5.2 Longitudinal Axis Linearized Model 

The states used in the longitudinal system were discussed previously 

in Section 3.4. As a design choice, the control variable was chosen to 

be the commanded elevator rate, 6 e ' the opposed to the commanded elevator 
C 

position be . This choice of control variable has some advantages: 
C 

one can then incorporate a saturation constraint of 25 degrees per second 

on the commanded elevator rate. The control penalty 

on 6 e can be adjusted to keep the system operating without saturation. 

CombiEing this choice of control with equations (3.4.61, the longitudinal 

system model has the form: 
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d 
dt 

V 

a 

e 

6 e 

W 

6 e C 

= 

. 

. B - 

) - (6x6) 

A - 
(6x6 

. . 

0 - 

. 

. 

. . . . . . . . . . 

. 
0 - 

(6x1) - (1x1) 

, \ 
L 

(1% 
-t . . . 2 (t) 

0 
, 

V 

ci 

e 

6 e 

W 

6 e C 

+ 

0 

:1 x 6) 

. . . 

1 

(5.2.1) 

The control system was designed using linear quadratic control 

theory 161, described in Appendix F. A quadratic performance index was 

selected with general structure 

Co 
,4 

I i 0 
(5' (t)g$t) + 5' (t)Qw )dt 

where the weighting matrices Qi, I+ are indexed as to possibly vary for 

flight condition. 

In the mitial design it was decided that one should relate the 

(5.2.2 

each 

maximum deviations of several variables in a cost functional of the form 

6 e C 
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given in equation (5.2.2). These variables were pitch attitude 8, 

pitch rate q, normal acceleration a nz and commanded elevator rate ie . 
C 

This yields a performance index of the form 

Jlon= Lrnk$ya) 2 +(f@2 + (f@ 2 + (k$ 2 dt 

(5.2.3) 

All of the variables included in the cost function Jlon are either 

state or control variables, except a nz' The linearized relationship for 

a nz derived in Appendix D is 

a,,(t) = 
vO 
;j- (klvW + k2"W + k3Be(t) ) (5.2.4) . 

Effectively the structure of the criterion implies that, if the maximum 

values of normal acceleration, pitch rate or pitch attitude occurred, 

one would be willing to saturate the elevator rate to remove them. For 

the preliminary design the following numerical values were used, as 

suggested by the NASA Langley Research Center technical staff. 

i a nz max = 6 g's 

q1 max = 
1og 

v i 

ei =-2+ 
max 

'ia: 

(5.2.51 



l i 8 
ecmax 

= .435 s =25 2 
. 
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(5.2.6) 

where V i is the aircraft speed (Mac no. x speed of sound) and a ' 33 IS 

an element of the linearized &matrices discussed in Chapter 3. The 

resulting Qi and F& matrices can then be computed for each flight condition 

using the values of the linearized models given in Appen,dices A and D. 

5.3 Reduced Model Longitudinal Design 

Using the Linear Quadratic design methodology, control gains were 

designed for the seven state model of equation (5.2.1) at each flight condi- 

tion. The closed-loop responses of the linearized models were studied to 

evaluate performance; it was decided that the design should be modified 

to exclude feedback aain on the Ditch angle 8 and the velocity deviation v. 

The primary reasons for this modification were: first, the gains on the 

velocity deviation were very small for all flight conditions. Second, 

as part of the ground rules it was desirable to avoid using the pitch and 

velocity sensors. The pitch angle e(t) is weakly observable from the system 

dynamics, so that in the absence of pitch measurements, large estimation 

errors would be obtained which could adversely affect the performance of 

the control system since the optimal gains include a significant gain on 

the estimated pitch attitude. Finally, it was decided that variations in 

8 and v occurred in a slow mode so that the pilot would be able to control 

variations in pitch and velocity. 

In order to eliminate feedback from undesirable states such as 8 and 

v, reduced-order "short-period" approximation models were used. These 
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models were discussed in Chapter 3 and Appendix B. Since pitch angle is 

no longer a variable in the reduced model, the performance index (5.2.3) 

was modified to 

where 

v. * 
a =-- 

nz g 
= (k2aW + k36e(t) 1 (5.3.2) 

Using the same values of ai, max, gax and ie max given by eqs. (5-2-5) and 
C 

(5.2.6), the reduced order linear quadratic optimization problem was 

solved, obtaining gains which depended only on q, a, 6 6 e' e and w. 
C 

The reduced-order aain desians were simulated using the full state 

linearized models, to evaluate the change in performance using the 

reduced-order model design. From the viewpoint of transient responses 

to the variables of interest (normal acceleration, pitch rate, angle of 

attack), the transient responses to initial conditions were almost iden- 

tical for both the full-state design and the reduced-order design. Thus, 

the short-period motion of the aircraft was dominated by the relative 

tradeoff between maximum normal acceleration anz max and maximum pitch 

rate Cfnax* The reduced-order gains tended to be smaller than their 

full-state counterpartsi The major difference in the performances of 

the two designs were that, in the simulations of the reduced-order design, 

velocity error v and pitch attitude deviation 8 were not reduced to zero. 



This performance was deemed acceptable, since the drift was slow enough 

for a human pilot to correct. 

Using the reduced-order design procedure, feedback gains were obtained 1 

for different values of the cost matrices 9.. 1 In particular, the parameter 

changed was with values defined as 

& =109,E3,~ 3 
x v. l. vi vi ’ vi (5.3.3) 

Figure 5.3.1 contains a plot of the closed-loop complex eigenvalues of 

the reduced system. These correspond to the "optimal" short-period 

dynamics. Notice that, for each choice of Gax, the poles for supersonic 

and subsonic flight conditions lie along lines of constant damping ratios. 

This result is of particular interest, since it reflects that the implicit 

cost adjustment in the matrix gi produced a constant damping ratio. 

Table 5.3.1 summarizes the damping ratios for different weightings. 

5.4 C*-Design Using Reduced Order Dynamics 

The problem of obtaining desirable handling qualities in the control 

system was approached from a C *-criterion point of view. The C* criterion 

is one of several measures which may be used to evaluate handling qualities 

of aircraft. Appendix J explains in detail the C* criterion. 

Essentially, the C* quantity represents a tradeoff between normal 

acceleration and pitch rate. This balance between normal acceleration 

and pitch rate can be used in.defining a new performance index of the 

form: 
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TABLE 5.3.1 

DAMPING RATIO FOR CLOSED-LOOP SHORT PERIOD 
POLES AS A FUNCTION OF MAXIMUM PITCH RATE 

PENALTY, cx, IN (5.3.1). 

%ax 

lw/vo 

Wvo 

W/v0 

WV0 

Damping ratio Damping ratio 
for all subsonic for all supersonic 
conditions conditions 

0.488 0.361. 

0.530 0.402 

0.552 0.449 

0.587 0.498 
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co 

tc* (t) 2 + +?ie j2)dt 
C 

(5.4.1) 

where 

- 
C*(t) = kianz(t) + kiq(t) ,. '.i', _.. (5.4.2) 

Note the ith superscript on the performance index and the weighings, 
._ 

indicating the dependence of the performance index on flight condition. 

The performance index JE* has an implicit balance between normal 

acceleration and pitch rate, determined by the constants ki and ki. These 

constants were chosen to be 

i 
k3 = 10; k; = 1. (5.4.3) 

independent of flight condition. Various choices for kt were tried, ob- 

taining optimal gains for the reduced models for each choice; upon evalua- 

tion of the various responses under closed-loop conditions, the optimal 

weight ki was chosen to be 

2 
= 5.252467 (5.4.4) 

This criteria was chosen for the final design of the fixed point 

controller. Appendix I contains a table of the optimal continuous-time 

gains for each flight condition. The optimal closed-loop poles are 

shown in figure 5.4.1. 
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5.5 Discrete-time LQG Design 

Using the Linear Quadratic Gaussian approach discussed in Appendix F, 

the continuous-time gains obtained in the previous section were converted 

to discrete-time gains. The final discrete-time gains are tabulated in 

Appendix H. Following the methodology of Appendix C, Kalman filters were 

designed using measurements of pitch rate and normal acceleration, based 

on the equivalent linear discrete-time models described in. Appendix E. 

Although an elevator position measurement was available, it was not used 

because of its trim dependence. 

The steady-state Kalman filter gains were determined 

using the sensor covariances quoted in Table 3.5.1, using a 15 ft/sec 

rms val.ue in the wind disturbance model of Section 3.4. They are 

"listed in A@pendix K. Closed-loop eigenvalues for the complete dis- 

crete time system are listed in Appendix L. 

5.6 Longitudinal Pilot Command System 

The basic regulator scheme used in the MMAC control system was 

described in Sections 5.1 - 5.5. In this section the regulator design 

is modified to incorporate pilot commands. The basic operation of the 

pilot command system is structured as follows: the stick position is 

translated into an elevator deflection input by multiplying it by a 

gear ratio. This commanded elevator deflection is translated into reference 

values of pitch rate and angle of attack using gains computed in the next 

.section. These three reference values are subtracted from the estimate 

of the corresponding state variables to produce error signals, which in 
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turn get multiplied by the optimal regulator gains to generate a control 

signal. Figure 5.6.1 illustrates this deterministic scheme. 

Pitch rate and angle of attack were chosen to be the controlled 

variables, as they are the dynamic variables mostly controlled and responded 

to by the pilot. This choice also simplifies the on-line computation of 

commanded variables, as only short-period dynamics need be considered. 

The regulator drives the aircraft to obtain the commanded state values; 

handling qualities are'not explicitly considered, as the responses are 

based on the regulator design, which partly addressed this, 

question. 

The complete controller structure for a given flight condition 

is shown in Figure 5.6.2. Notice that, in the absence of pilot inputs, 

the individual controller design is essentially the LQC controller dis- 

cussed in previous sections. Thus, thfs design preserves the regulator 

properties, extending the structure to incorporate pilot commands. 

The gains between pitch rate and elevator deflection input, and between 

angle of attack and the input are obtained from a steady-state analysis 

of the short-period dynamics. The short-period dynamics of the aircraft, 

ignoring the actuator dynamics, can be modeled as in Chapter 3 by: 

(5.6.1) 

For the steady state, one sets i = & = 0, to obtain the algebraic equation 

(5.6.2) 
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The steady-state gains are now readily obtained by 

-bla33 + b3a13 

=na33 - a13a31 
(5.6.3) 

Gad+ -b3all + bla31 (5.6.4) 
e alla33 - a13a31 

Table 5.6.1 contains the values of the steady-state gains G 
q 

and Ga for 

all flight conditions. 

The steady-state gains depend on the relationships between elevator 

deflection and the resulting short-period steady state, which depends only 

on the aerodynamic properties of the aircraft. These gains are independent 

of the regulator design or the control scheme, and remain unchanged if a 

discrete-time controller is used. 

The selection of the gains does not involve handlinq qualities, nor 

does it guarantee satisfactory aircraft performance. The control gain 

design used in the regulator controller in Section 5.1 - 5.5 was achieved 

using handling qualities considerations. Simulation results indicate that 

the proposed steady state gain scheme coupled with the regulator design 

yield satisfactory responses to pilot commands. Notice that the gearing 

ratio between the pilot stick and elevator deflection is left as a design 

parameter to be adjusted, which will change the sensitivity of the system 

to pilot actions. Nominally, this value has been set to 

Gearing Ratio = 4.75 deg/in (1.87 deg/cm) (5.6.5) 

which was suggested by Langley staff. 
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TABLE 5.6.1 
: " 

TABLE FOR GAINS THAT APPEAR IN LONGITUDINAL COMMAND SYSTEMS 

(see Figure 5.6.2) 

Flight Condition 

5 -.987 

6 -1.9024 

7 -2.4096 

8 

10 

11 

12 

-3.0430 

-.6239 

-1.1072 

-1.7531 

13 

14 

15 

-1.9191 

-.5826 

16 

17 

-.8412 

-.9429 

-.5958 

-1.2817 

-1.3882 

-1.2265 

-1.1218 

-1.2079 

-1.3454 

-1.4520 

-1.3159 

-.3525 

-1.9356 

-1.8695 

-1.0260 

18 -.3253 -.4627 

19 

20 

- .2973 

-.2399 

-.4272 

-.4121 

GAIN 
G 

q 

GAIN 
G a 
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5.7 Modifications of Controller Design 

The longitudinal system models were all linearized about different 

trim conditions, namely the nominal values of angle of attack, pitch angle 

and elevator deflection. Table 5.7.1 contains the trim,conditions for 

the fifteen flight conditions in the MMAC. The linearized equations in 

Appendix A.describe the evolution of deviations of the variables from 

their equilibrium values. Thus, in order to output a command to the 

aircraft, it is necessary to.know the reference trim values of elevator 

position. 

There are various ways of handling the trim problem in the longitudinal 

system. One way is to treat the trim values of elevator as a state 

variable to be estimated, together with the other variables. This method 

represented additional complexity, and did not seem accurate enough, thus 

it was rejected. 

Another possible way of handling trim is to use a self-trimming con- 

troller design such as P-I controller [28], [29]. Preliminary studies 

by tie, Athans et a1.[29] provided the foundation for a sampled-data 

P-I-D controller which would result in neutral speed stability. Figure 

5.7.1 contains a tvvical controller desiun. However. this controller 

desian was not fullv available and imvlemented in a stochastic framework 

durina the course of this studv. 

Since it attempts to control only the short-period response of the 

aircraft, the MMAC system was coupled with filtering schemes which attenua- 

ted low frequendes (hence reducing trim effects). Additionally, the control 

variable was chosen to be 6 ec- to introduce some integral control and 

; reduce steady-state errors. These are the modifications to the MMAC control 
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Flight 
Condition 
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6 

.-, 
7 

8. 

10 

11 

i2 

13 

14 

15 

16 

17 

18 

19 

20 

, 
TABLE 5.7.1 

TRIM VALUES FOR FLIGHT CONDITIONS 

(see Table 

Trim Angle of Attack 
and Pitch Angle : 

(Degrees) 

7.991 

2.989 

1.921 

1.536 

9.270 

4.429 

2.626 

2.250 

1.490 

7.035 

5.371 

4.257 

2.822 

2.736 

2.063 

1.3.1) 

Trim Elevator' 
(Degrees) 

-3.960 

-2.495 

-2.455 

-2.537 

-5.549 

292.66 

124.81 

.'-3.663 

-2.615 

189.13 

252.66 

-2.650 281.58 

-2.131 

-4.791 

-3.891 

-3.521 

-4.463 

-4.416 

379.26 

205.08 

235.17 

264.94 

353.80 

412.79 

-3.465 472.00 

Trim Forward 
Velocity 
(m./sec) 

101.36 

180.18 

238.16 
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algorithm which enable it to account for the trim effects in the filtering 

scheme. 
, I- . 

Figure 5.7.2 contains a diag&of the longitudinal control scheme . 

of the MMAC with the filterinq included. The combined commands of the 

pilot stick and trim integrator are separated into a high-frequency and 

a low-frequency component by a second-order high pass filter. Experimen- 

tation established the break frequency to be 0.4 radians/second. The 

discretized equations for the filter are given in Appendix' M. 

Additionally, the pitch rate and normal acceleration measurements are 

high-pass filtered as described in Appendix M. The high-frequency measurements 

and commands are then processed by the MMAC control system described in ,... 

Sections 5.1 - 5.6. This produces a desired elevator command :i,,. This 

command is then added to the low-passed components of the stick and trim 

integrator to produce the complete command to the aircraft. 

This control scheme does not provide neutral speed stability. How- 

ever, it reduces the effects of trim differences throughout the flight 

envelope on identification, and it allows the prlot tc trim the aircraft 

using the trim integrator. Isolating the high-frequency components of 

commands and measurements is consistent with the philosophy of controlling 

only the short-period response of the aircraft. 

5.8 Performance of the Longitudinal Control System 

Figures 5.8.1 to 5.8.12 illustrate the performance of the longitudinal 

regulator system over the flight envelope of the F-8 a-ircraft. The air- 

craft is subjected to a six degree alpha gust initially;. the transient 
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response of the aircraft is shown under no turbulence and 4.57 m/set 

rms turbulence. The figures contrast the uncontrolled 

(open-loop) response of the aircraft with the controlled regulator response. 

The simulations were obtained at NASA Langley Research Center using a full 

state non-linear model of the F-8C aircraft. 

The simulations conducted with no turbulence highlight the gust- 

alleviation damping of the MMAC system at various flight conditions. When 

the turbulence level is 4.57 m/set rms,the simulations highlight the MMAC 

system's ability to reduce the rms level of continuous turbulence. All 

closed loop simulations were done using the full sampled data stochastic 

design using a sampling period of l/8 second. 

Figures 5.8.13 to 5.8.15 contain the airplane responses to a doublet 

command in the longitudinal system at six selected flight conditions. 

The steady-state gain design for the MMAC system was used in conjunction 

with the high-pass filtering scheme which separated stick commands into 

long-term and short-term commands. The short-term commands are used in 

driving the MMAC command system; the MMAC commands are subsequently added 

to the long-term commands to form the total command to the aircraft. 

The longitudinal stick response shown is the short-term command mentioned. 

The simulations describe the designed responses of the MMAC control system 

under perfect identification. 

It should be noted thatall closed loop simulations used the complete 

sampled data stochastic design, with Kalman filters and instrument noise, 

at a sampling period of l/8 seconds. 
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Figure 5.8.14 Longitudinal system responses to elevator doublet command, 
no turbulence, altitude 6096 meters 

(a) closed loop responses, speed .6 Mach 
(b) closed loop responses, speed .9 Mach 
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CHAPTER 6 

LATERAL AXIS CONTROL AUGMENTATION SYSTEM 

6.1 Introduction 

This chapter discusses the fixed-point controller designs for the 

lateral system. The regulators for the individual lateral models were 

designed using the procedures outlined in Appendix F, The overall design 

philosophy closely paralleled that used for the longitudinal system but 

the two controllers were designed independently. After choosing control 

variables, the development of the cost function is discussed. To incor- 

porate pilot commands, an explicit model-following method was used. 

6.2 Choice of Control Variables 

As presented in Chapter 3, the model for the lateral states of the 

aircraft has its input variables the commanded aileron and rudder positions. 

One decision which was made early in the design process was to actually 

control rates of these variables. The reasons for making this decision 

have been discussed in [20], [21]; namely, the presence of integrators 

in the control loops could be used to compensate for steady-state errors. 

Thus, the first step in the regulator design was to augment the model given 

in Chapter 3 to provide for the two integrators necessary to generate 

position from rate. 

The model following problem has been discussed in many papers [32], 

so only the briefest development is presented here. Model following is 

essentially a straight-forward extension of regulator theory in which 

the error between the actual state and the model (i.e., desired) state 

is penalized. 
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Assume (6.2.1) represents a given model which describes the behavior 

to be emulated. 

. 
34 =A+&+% (6.2.1) 

The control problem can be posed using the model of (6.2.1) directly, but 

as is well known, this leads to a control scheme which anticipates the 

values of u --M (i.e., the pilot inputs). This is clearly unreasonable so 

some assumption must be made as to the character of these inputs. We 

therefore assume that the signals u+ are themselves outputs of a mpdel 

driven by white Gaussian noise as in 

. 
34 =Au +Bv 

--PM P- 
(6.2.2) 

where v is zero mean white gaussian noise. - 

One can now combine the aircraft model of Chapter 3 with equations 

(6.2.1) and (6.2.2) to get 

Clat 1 0 1 0 
. . . . 

0 :A++ - . . . . . . 
0 :O:A - - 7s I I 

A cost function of the form 

cn 
J T= 

0 i 
[(x - H&JTglr. - s) + uTRu]dt -- 

T with u = rs : ire] can now be posed so that a control law ac . 

(6.2.3) 

(6.2.4) 
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u=[G : s : 
T. T. TT 

- 1[ . &I 15 : 5 : %I can be found. . 

A few comments on the solution of this problem are in order. First 

of all, as posed above, this is a straightforward variant of the regulator 

problem discussed in Appendix F and so is easily solved in theory. 

Secondly, the Separation Theorem implies that the optimal gains &, 

$ and s do not depend in any way on the statistics of the white driving 

noise nor on the value of B 
l?' 

Thus, these are of no further concern. 

Last, upon writing the Riccati equation for the model following problem 

some one-way separations become evident. Thus, the control gain 5 

depends only upon the values of Illat, Flat, 2 and 5 and is therefore 

independent of the model to be followed. In fact, the matrix s is 

exactly the one resulting from solving the conventional regulator 

problem (i.e., with & 5 2). Furthermore, $ is independent of all assump- 

tions on the pilot input model (i.e., A 
-P' % 

etc.). Therefore, the choice 

of models for the input (i.e., A B 
7' T 

) has a minimal effect on the overall 

solution. Figures 6.2.1 shows the resultant lateral systems 

designs. 

The model used in the model-following scheme has been provided by 

the Langley staff as a linear model of an aircraft which would be well rated 

by a pilot. The dynamic equations are 



Pilot._ ‘MI~M 
: MODEL , 

Inputs jSMr+M. I 
Srud 

‘ni 
. Cl 

6; PLANE 
I 

4 I 

Figure 6.2.1 Structure of Lateral Controller for each Model 
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r -4 .865 -10. 0 1 
.04 -.507 5.87 ’ 0 

G&t) = 
0 -1.0 -7.43.' 

x + 
'g/v0 +-I 

0 -3.1 

3.3 1. U 
-M 

(6.2.5) 
0 0 

where 

and 

L&= id aiR' '$ud]- 

It should be noted that the lateral model of Eq. (6.2.5) is flight 

condition dependent through the term g/Vo. Hence, the desired lateral 

response of the aircraft, as dictated by the lateral model (6.2.51, will 

change from flight condition to flight condition. Essentially, the term 

g/V, allows the aircraft to execute coordinated turns without excessive 

sideslip and lateral accelerations at different speeds. 

On the other hand, under the design ground rules the measurement 

of the aircraft velocity V 0 could not be included in the implementation 

of the control system. Since the model (6.2.5) is an integral part of 

control system, see Fig. 6.2.1, a constant value for V. had to be.selected. 

The one selected was that corresponding to flight condition #ll (V, = 

189.13 m/set or 620.5 ft/sec) for all subsequent simulations. 

The choice of a constant V. for the model represents a serious 

shortcoming as far as the handling lateral quantities of the aircraft 
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for large bank angles are concerned. If the actual velocity of the 

aircraft is near the selected value V 
0' then the aircraft lateral 

response should be satisfactory. On the other hand, when the 

aircraft velocity is drastically different from V 0 one may need 

to have excessive sideslip and lateral acceleration in order to hold 

bank angle at its commanded value. This will be illustrated in 

Section 6.4. 

It should be remarked that the shortcoming, of the possible poor 

lateral responses are not due to the MMAC philsophy, but rather due to 

the fact that the aircraft velocity was not measured nor estimated 

in the design. 

As discussed earlier, a stochastic model of the form of equation 

(6.2.2) is needed to model the actual pilot inputs. It should be pointed 

out that all of the control gains (s, s, and s) are independent of 

B and the statistics of V. Thus, 
TJ 

they are ignored in the following. - 

Many models of the form of (6.2.2) are possible. In the design 

presented here, A 
72 

= 0 was used to obtained the % feedback gain. This 

was chosen principally to help the controller anticipate the model re- 

sponse and thereby keep the model-following errors small. 

6.3 Cost Function Development 

Designing a quadratic cost function which would provide good aircraft 

response at all flight conditions proved to be a difficult task. This is 

in contrast to the longitudinal system where a minimum number of iterations 
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were needed. This complication is partly due to a tight coupling between 

the various modes in the lateral dynamics, and the use of a specific 

model following concept. 

The basic philosophy for determining the control and state penalties 

for the first iteration in the design was to determine those qualities 

considered important in aircraft performance,and then to weigh these 

quantities in the cost function by the inverse of the maximum allowable 

deviat-ions inthe quantities of interest. After discussions with NASA 

staff, it seemed that the most important quantity to penalize was the 

lateral acceleration. For the control penalty the rate saturation 

was used. The aileron rate saturation value 6 amax was modified by 

value 

a factor 

of two-thirds to reflect a greater willingness on the part of the pilot to 
. 

saturate the rudder rate 6 rmax compared to the aileron rate. 

For the regulator, this leads to a cost function of the form, 

Jl(u) = [ (~)2+()f!--+(~- dt (6.3.1) 

ii 
. 

and 6 amax rmax 
were gi‘ven by hardware limitations while for a 

ym= 
a value of .25 g's was decided upon. A summary of the progression of 

cost functions is shown in Table 6.3.1. These cost functions have been 

discussed in [30]. 

In order to overcome the poor convergence of the sideslip angle and 

the fast convergence of the bank angle, penalties on sideslip angle and 
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roll rate were added. The weights of the penalties on these variables 

were determined largely by limited trial-and-error. It was desirable to 

make this added penalty not affect the good qualities of response already 

achieved with respect to lateral acceleration and also to make any variations 

due to,differences between flight conditions "automatic". Therefore, it was 

decided to add a fraction of the roll rate and sideslip angle penalties 

to the penalty function. After some experimentation, values of 10% 

of the penalty due to lateral acceleration alone were chosen. Thus, the 

cost function became: 

03 

J2(u) = Jl(u) + 
0 I 

[Klp2W + K2B2W ldt 

with 

Kl = .l@ (a31 - CXol) 2 

(6.3.2) 

(6.3.3) 

and 

2 
(6.3.4) 

A relatively mild penalty on bank angle was added to the cost function 

to prevent the aircraft from banking excessively; thus the cost 

function became: 



6-10 

TABIE 6.3.1 

SUMMARY OF COST FUNCTION PROGRESSION FOR THE LATERAL DYNAMICS 

Variable 
penalized 1 I 2* 3 

ii amax 

i rmax 

a ymax 

** 
P max 

B ** 
max 

Q max 

$(140°/sec) $(1409/set) 

70°/sec 70°/sec 70°/sec 

.25 g's .25 g's .25 g’s 

0 
“; 

0 
K2* 

0 I 0 

$(1400/*9c) 

Kl 

K2 

45O 

70°/sec 

.25 g’s 

K1 

K2 

15O 

*Kl and K2 were derived largely by trial and error resulting in many 

variations between iteration 1 and 2. 

**K 1 and K2 are given in the text, Eqs. (6.2.3) and (6.2.4) 
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J3W = J2(u) + 
0 

(6.3.5) 

It was found that in order to design the model-following scheme used to 

implement pilot commands,' the bank angle penalty had to be included; 

the value of emax was chosen to be 15O. The resulting cost function for 

the model-following problem can then be interpreted as: 

a, 
J(u) = 

1 
0 

' - 'mode 
P max 

1 

I 

2 

'5 1 
,z 

'rc 6 rmax 
J 

+ 

dt (6.3.6) 

In converting equation (6.3.6) into the form of (6.2.4) it is necessary 

to use a linear approximation to the a and a terms. 
Y Y 

This approximation 
model 

is discussed further in Appendix E. Controller gains were then calcu- 

lated for all flight conditions using this cost function. 

Using the equivalent discrete-time models of Ap_pendix E, Kalman filters 

were designed to operate at a sampling interval of l/8 sec., using measure- 

ments of roll rate, yaw rate, bank angle, lateral acceleration, aileron 
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and rudder angles, assuming the sensor noise rms values quoted in 
.:,. . .’ ‘23. ! 

Table 3.8.1, and a 4.75 m/set rms value in the wind disturbance 

model of Section 3.4. 
;, 

The feedback gain from the wind state was set to zero, because 

of the slow convergence of the Kalman filter estimate for the wind 

state. The feedforward and feedback gains were converted to equi- 
:- 

valent discrete-time gains with a sampling interval of l/8 sec. as 

described in Appendix F. The discrete time control gains are shown 

.t,i: 
in Appendix H. Kalman filter gains and discrete-time control and 

filter eigenvalues are listed in Appendices K and L, respectively. 

Figure 6.3.1 contains a plot of the continuous-time complex 

eigenvalues. 

.6.4 Simulation Results 

In this section some simulation results are shown,for,six selected flight 

conditions. The first simulations give the response to beta gust (sideslip) 

disturbances for both the unaugmented airplane and the regulated one. The 

simulations were conducted at both no turbulence and 4.57 m/seC 

rms wind turbulence. They highlight the improvements introduced by 

the WAC system in gust-alleviation, and in reducing the rms level of 

continuous turbulence effects. Figures 6.4.1 to 6.4.6 contain the 

lateral system responses to a 2O beta gust under no turbulence 

at various flight conditions. These simulations highlight the damping 
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!, 
A of the effects of initial gusts. Figures 6.4.7'to 6.4.12 containthe 

lateral system responses to a two-degree beta gust under a 4.57 m/set. 

rms turbulence level.. These simulations highlight the reduction of 

the rms level of continuous disturbance. The simulations were conducted 

using NASA Langley's nonlinear simulation of the F-8C aircraft. 

Figures 6.4.13 to 6.4.18 illustrate the response of the aircraft 

to a 2" doublet command in the lateral stick at various flight condi- 

tions. Both the model states and the aircraft states are shown; no 

turbulence is used in these runs. These results indicate that both 

the roll rate and bank angle follow the model well. Further, when the 

aircraft is near flight condition ll (the flight condition around which 

the model is based in terms of the numerical value of V8) the late,ral 

acceleration remains small. However, for other flight conditions (i.e., 

see Figure 6.4.17) lateral acceleration becomes large. Also, sideslip 

angle does not follow the model. 

As mentioned in Section 6.2 these problems are primarily due to: 

(a) Using a fixed model based on FC 11. 

(b) The use of an approximation in computing ay in 
model 

equation (6.3.6) resulting in a 
Y 

being nonzero. 
model 

A change in the model to be followed is clearly indicated, possibly 

resulting in a simpler model which would not involve sideslip 
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angle or lateral acceleration. The essential idea would be to remove 

the a 
Y 

term from equation (6.3.6) and thereby always require a 
model Y 

to near zero. 

It should be noted that no rudder pedal response characteristics 

have been presented. The philosophy followed was to design a feet-on- 

the-floor cqntroller in which the rudder surface would be automatically 

controlled. Thus, the rudder pedal response was not of concern. 

Additionally, the simulations were conducted using a complete sampled- 

data LQG controller, with Kalman filters and instrument noises included. 
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CHAPTER 7 

MMAC EXPERIMENTS 

7.1 Introduction 

This chapter discusses simulation results obtained using I,angley 

Research Center's nonlinear simulation of the F-8C aircraft. To test 

the gust alleviation properties of the MMAC, the aircraft was initially 

trimmed at various altitudes and speeds, then subjected to a 6O 

angle of attack (~1) gust and a 2O sideslip angle (6) gust. 

To test the response of the MMAC system under pilot commands, the 

aircraft was subjected to doublet commands in the longitudinal and 

lateral axes. The models in the MMAC were all initialized with equal 

probability. The simulations show both the aircraft responses and the 

identification responses of the M&Z system. Various levels of tur- 

bulence were used in these experiments. Three test flight conditions, 

at various altitudes and speeds, have been chosen to illustrate the 

performance of the MMAC across the F-8C flight envelope. 

7.2 MMAC Control Systems 

The fixed-point controllerdesigns of Chapters 5 and 6 were combined 

with the MMAC identification algorithm, to yield MMAC control systems 

for the longitudinal and lateral axes. Figures 7.2.1 and 7.2.2 illustrate 

the operation of these MMAC control systems. 
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For testing the response of the MMAC controlled aircraft to 

stick inputs, a doublet command of twenty seconds duration, as 

depicted in Figure 7.2.3,was applied to either the lateral or 

longitudinal systems. For the longitudinal system, the pilot stick 

command is separated into slow and fast commands using a high-pass 

filter. The fast command is processed by the MMAC control system; 

this control system computes an optimal command for each possible 

flight condition, using the design of Sections 5.1 to 5.8. These 

individual commands are combined into a weighted average using the 

control probabilities discussed in Section 4.6. This processed 

"fast" control is combined with the "slow" control to produce the 

complete command applied to the aircraft. 

The lateral system controller works on a different principle. 

The lateral stick command drives the lateral system model described 

in Chapter 6. The states of the lateral model are used in computing 

optimal commands for each possible flight condition using the model- 

following scheme described in Chapter 6. The individual commands are 

combined into a weighted average using the control probabilities of 

Section 4.6 to produce the command applied to the aircraft. 

In both the longitudinal and lateral systems, sensors measure 

the aircraft responses. These responses are used to drive Kalman 

filters for each possible flight condition. The residual signals of 

these filters are used in evaluating the identification and control 

probabilities, as described in Chapter 4. 
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The main feature of the MMAC controller is that allN hypothesis 

flight conditions have an individual controller designed on LQG 

principles. The outputs of these controllers are combined probabi- 

listically to obtain the complete command applied to the aircraft. 

7.3 Stability Tables for Mismatched Controllers 

The MMAC algorithm frequently identifies a flight condition 

which is different from the true condition of the aircraft. Using 

only the linearized discrete time representations of the aircraft 

as discussed in Chapter 3, one can examine the effect of this 

mismatching in terms of the stability of the system. Denote the 

true aircraft linearized matrices by superscriptt. Assume the MMAC 

algorithm is using flight condition i. In the absence of pilot com- 

mands, the deterministic system equations are 

(7.3.1) 

i A 
u(t) = -g z(t) (7.3.2) - 

E;(t) = g(t) + $ (z(t) - c' i+) 1 (7.3.3) - 

z‘(t) = $ %(t-1) + $ u(t-1) (7.3.4) - 

z(t) = ct x(t) (7.3.5) 

Combining these equations yields the following system equations 
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‘L 

x(t+l) = 2 X(t) + - $ gig(t) 

. . . 
- HI&$ -- 

This can be represented as 

X (I) ( Atd - 

(t+l) = . 
j; H=CtA; -- (I-HiCi) (A;-BiGi) ____ - HICtBtG' 

(7.3.6) 

(7.3.7) 

(7.3.8) 

The eigenvalues of the matrix in equation (7.3.8) indicate 

whether the mismatched combination of identified and true system is 

an unstable combination. Two tables are presented for each system. 

The first table declares a combination unstable if any eigenvalues 

are greater than one. The second table, to allow for numerical er- 

rors, declares a combination unstable if any eigenvalues are greater 

than 1.005. As seen in Appendix L, many of the filter and control 

eigenvalues are 1.0, so the second table yields a truer measure of 

the instabilities present. These tables will be useful in inter? 

preting the simulation results that follow in this Chapter. 
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7.4 Simulations at Sea Level 

The test flight condition used in these simulations was flight 

condition 7; the akcraft was initially.trirnmed at level flight 

near flight conditions 7 and 8 at an altitude of 1000 ft. (304.8 m.) 

and a speed of .7 Mach. The aircraft was then subjected to a com- 

bined ~OCX, 2'6 gusts. 

.Figure 7.4.1 contains the longitudinal system transient responses 

corresponding to a MMAC system with perfect identification (that is, 

one which always identifies flight condition 7 with probability I), 

a MMAC system with models 6, 7, 8 and 10 as hypothesis; and a MMAC 

system with models 6, 8, 18 and 19 as hypothesis. Figure 7.4.2 con- 

tains the lateral system responses of those experiments. Figure 

7.4.3 contains both the lateral and longitudinal system responses 

for an MMAC system with models 7, 8, 18 and 19. The major differences 

in the initial transient response of the four simulations are due 

to the different models involved in the various MMAC systems. Since 

the initial model probabilities are set equal, the initial control 

gains consist of an average of the four sets of control gains in the 

MMAC system. This difference is clearly seen in the lateral system 

responses. 

The low-pass filter which smooths out the identification proba- 

bilities for control purposes prevents an initial rapid change of 

the control gains, so the initial transient response is controlled 
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by the initial combination of models. After one second, the MMAC 

identification has a sizable effect in changing the control gains. 

Figure 7.4.4 contains the time history of the control probabilities 

for two MMAC systems. The difference in the lateral responses in 

Figures 7.4.2 and 7.4.3 is due to the different control gains: 

Flight condition 6 for MMAC with models 7-8-6-10, and Flight conditions 

18 and 19 for MMAC with models 7-8-18-19. 

Figures 7.4.5 and 7.4.6 contrast the perfect identification 

response with the MMAC responses when the aircraft is operating 

under heavy turbulence l.4.57 m/set rms). Figures 7.4.7 and 7.4.8 

display MMAC responses of the aircraft over a 35-second simulation 

while the aircraft is subject to moderate turbulence (1.22 m/se'c rmS)- 

Figures 7.4.9, 7.4.10 and 7.4.11 show the time histories of the control 

probabilities and the weighted sum of residuals (WFLS) denoted by m(t) 

for these simulations. The histories of m(t), i.e., the weighted sum 

of residuals, give an indication of the information used by the MMAC 

algorithm for identification purposes. They also offer an indication 

of the separation between the various hypotheses used in the MMAC system. 

In these simulations, the low turbulence level provides a consistent 

excitation. However, after the initial transient dies out, it is dif- 

ficult to distinguish between the various hypotheses; this is reflected 

in the changing control probabilities. 

The important element to notice in Figure 7.4.7 is the slow 

rise in pitch angle. This corresponds to the phugoid mode of the 

aircraft, which is excited in the control of the initial transient. 
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Since the MMAC attempts to control only the short-period response of 

the aircraft, it does not affect the slow phugoid oscillations. 

Overall, the aircraft responses obtained using MMAC controllers 

closely matched the responses obtained using the gains with perfect 

identification. The major exception occurred when gains from super- 

sonic flight condi.tions were used to control the aircraft at subsonic 

flight conditions. 

The performance of the MMAC identification algorithms is 

illustrated in Figures 7.4.4, 7.4.9, 7.4.10 and 7.4.11. The lon- 

gitudinal identification system has difficulty distinguishing between 

flight conditions 6 and 7 in the absence of turbulence. The open-loop 

models for these conditions are different; however, when a controller 

is added, the closed-loop systems are very difficult to distinguish. 

This is reflected in the similar aircraft responses in Figure 

7.4.1 (a) and (b). This difficulty is also present when moderate 

turbulence is introduced, although in a lesser degree, as illustrated 

by Figure 7.4.9. The identification system for the lateral axis 

performed poorly throughout these experiments, identifying supersonic, 

40,000 feet altitude flight conditions when the aircraft was flying 

at sea level. 

Figure 7.4.12 shows the longitudinal system responses of four 

MMAC systems to elevator doublet commands. The decay observed in the longi- 

tudinal stick position is the effect of the high-pass fi .ltering scheme 
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discussed in Chapter 5, used to eliminate trim effects and to 

separate short-period responses from long-period responses. The 

simulations in Figure 7.4.12 were conducted under no turbulence. 

Simulation (a) used an MMAC system with hypotheses models 7, 8, 6, 

10. Simulation (b) used an MI$AC system with hypotheses 7, 8, 6, 20, 

all close in dynamic pressure. Simulation (c) used an MMAC system 

with hypotheses 7, 8, 18, and 19, and simulation (d) used an WAC 

system with hypotheses 6, 8, 18, 19. Note the close performance of 

these four MMAC systems; the aircraft responses in simulations (c) 

and (d) indicate a slight drift in pitch angle, due to the presence 

of two supersonic hypothesis models in the MMAC system. This close- 

ness indicates a degree of robustness in the MMAC algorithm with 

respect to the model hypotheses used. 

Figures 7.4.13 and 7,4.14 show the control probability responses 

for these four experiments, together with the weighted sum of square 

residuals (m(t) time histories) for each hypothesis model. Figure 7.4.13 

and Figure 7.4.14a illustrate that the identification scheme chooses the 

correct hypothesis while the aircraft is maneuvering. In all three cases 

flight condition 7 was identified correctly. Once the maneuver stops, the 

residuals become close to zero, and as such the identification scheme 

lacks information. In the absence of information the identification 

scheme falls into the 6 * behavior mentioned in Chapter 4, but with no 

ill effects on the aircraft responses, as flight condition 6 is a close 

neighbor of the true flight condition. Table 7.4.1 contains a list of 

the B* values for each flight condition. Note in Figure 7.4.13a that 
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the fi*-dominant model is flight condition 10; however, the mismatch 

stability tables in Section 7.3 indicate that model 10 is an unstable 

choice. This is quickly indicated by an increase in m(t) correspon- 

ding to model 10, thereby changing identification to model 6. This 

fi* behavior can be eliminated through proper tuning of the threshold 

mentioned in Chapter 4, recognizing when there is a lack of information. 

The key point to notice is that flight condition 7 was identified 

correctly while the aircraft was maneuvering, even in the absence of 

elevator measurements. The m(t) traces for models 6,7, and 8 are 

remarkably similar, yet the identification scheme is able to choose 

correctly. When the correct hypothesis is not included in the system, 

Figure 7.4.14 b indicates that identification is uncertain during 

the maneuver, affecting performance. 

Figure 7.4.15 shows the responses of a repeat of three of the 

experiments in Figure 7.4.13, conducted under 1.22 m/set. rms tur- 

bulence. The presence of turbulence should provide enough information 

to avoid the B* behavior. Figure 7.4.16 contains the longitudinal 

control probability and m(t) responses. The B* behavior encountered 

in the previous experiments is not present in these simulations. This 

figure suggests that the presence of mild turbulence actually hinders 

the identification of the true system during maneuvers. During the 

five second quiet period before the doublet command starts, the tur- 

bulence level drives the identification towards the correct model. At 
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the start of the command, there is some confusion between models 7 

and 8, which is eventually resolved correctly. The responses in 

Figure 7.4.15 are quite good; the supersonic hypotheses have a re- 

duced effect. because of the identification changes in the preliminary 

quiet periods. 

Figure 7.4.17 describes the lateral system responses to a doublet 

command in the lateral system, under no turbulence. The bank angle 

response is very good, holding lateral acceleration to a minimum. The 

MMAC system did not include the true hypothesis, model 7, in this ex- 

periment. The important aspect of this experiment is the difference 

in the m(t) responses when there is a command, and when there is no 

command. When there is a doublet command, only the close neighbors of 

the true hypothesis, models 6 and 8, are identified? When the doublet 

command stops, Model 18 is suddenly identified. The resulting combi- 

nation produces a stable system in spite of inaccurate identification. 

These results substantiate the theory that the MMAC algorithm tends to 

identify only "stable" combinations of time system and hypothesis 

controller. This experi'ment also indicates a basic inaccuracy in the 

lateral identification system in the absence of commands, corroborating 

the results of the gust-alleviation experiments. 

7.5 Simulations at 20,000 Feet (6096 meters) 

The test flight condition chosen at this altitude was flight condi- 

tion 11, with a speed of .6 Mach.. The first set of experiments corres- 

pond to a combined 6O angle of attack (c-gust) and 2O 
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TABLE 7.4.1 

-@* VALUES OF FLIGHT CONDITIONS 

Flight Condition 

8 

7 

14 

6 

13 

20 

19 

12 

18 

11 

5 

17 

16 

15 

10 

Longitudinal fi* 

54 

86 

86 

127 

132 

135 

139 

146 

153 

194 

195 

203 

210 

224 

236 
- 

Lateral B* 

29,044 

38,100 

54,601 

47,069 

62,612 

69,951 

66,707 

65,498 

68,941 

73,415 

57,670 

75,185 

77,470 

80,508 

82,577 
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Fig. 7.4.1 Longitudinal responses to 6O~1, 2O$ initial conditions, 
no turbulence, altitude 304.8 meters, speed .7 Mach 

(a) Perfect identification responses 
(b) MMAC responses, Models 6,7,8,10 
(c) MM?vZ responses, Models 6,8,18,19 



7-18 

Deg./see. 

P 
Deg. 

4 
Deg. 

LATERAL 
ACCELJ3?ATION 

g's 

6a 
Deg. 

br 
Deg. 

2.5- 

-2.5- ‘L - 

-:ik*;‘:--:-. 
0. 5 .to 20 0 5 10 20 0510 20 30 

(a) 
t(sec) 

(b) 
t(sec) t(sec) 

(cl 

Figure 7.4.2 .Lateral responses to 6'13, 2'6 initial conditions, 
no turbulence, altitude 304.8 meters, speed .7 Mach 
(a) Perfect identification responses 
(b) MMAC responses, Models 6,7,8,10 
(c) MMAC 'esponses, Models 6,8,18,19 



7-19 

a 
Deg. 

Q 
Deg./set. 

9 

Deg. 

12.9 

0 

b 

. j 
II ,i: : .’ ;. /.,I. i , , ,:, 

; .,. i I -12.5’ ‘. :’ 

25. : ,i ,.: 1, , * 

-22.5- 
+ 5- 

NORMAL 
ACCELEF'ATION I 

FLIGHT PATH 

6e 
Deg. 

-6.237= 

LONG STICK 0 
Deg. 

I 0 
(a) t(sec) 

Deg./set. 

R 

Deg./set. 

P 
Deg. 

4 
Deg. 

LATERAL 
ACCELERATION 0 

L=-=--- Iv-- 
g’s 

-. 5 4L 2.5- -- 7 k 

6a O- 
Deg. 

-2.5- 
1.5-- 

L 
6r 

Deg. 
O- 

-1.5- 

I 

v\ 
-+- 

( .I ! ’ : ,. .:. ,. , i: ,i. i ,I : i,,y : 

% ! ::I .!I ! ,, , . . :.. ,,. ,;,y ii 
,!I.;‘;! ;a 

:. 

LATEHAL STICK 0 - 

Deg. 

I I I 1 I I I 
0 2 

[b14 
6 

ttsec) 

Figure 7.4.3 Longitudinal and Lateral responses to 6'a, 2"f3 
initial conditions, no turbulence, altitude 
6096 meters, speed -7 Mach 

MMAC models 7,8,18,19 



7-20 

Probability of 
Longitudinal Model 

7 

Probability of 
Longitudinal Model 

7 

Probability of 
Longitudinal Model 

8 

Probability of 
Longitudinal Model 

8 

Probability of 
Longitudinal Model 

18 

Probability of 
Longitudinal Node1 

6 

Probability of 
Longitudinal Model 

10 

Probability of 
Longitudinal Node1 

19 

Probability of 
Lateral Model 

7 

Probability of 
Lateral Node1 

7 

Probability of 
Lateral Mods1 

8 

Probability of 
Lateral Model 

8 

-----e--k+- 0 2 
(b) 1(sec) 

Probability of 
Lateral Model 

6 

Probability of 
Lateral Model 

18 

0 
L 

0 * 
a t(sec) 

Probability of 
Lateral Model 

10 

Probebility of 
Lateral Model 

19 

Figure 7.4.4 Control probability responses to 6Ocx, 2OB initial conditions, 
no turbulence, altitude 304.8 meters, speed .7 Mach 

(a) MMAC responses, Models 6,7,8,10 
(b) MMAC responses, Models 7,8,18,19 



7-21 

d 
Deg. 

Q 
Deg./set. 

8 
Deg. 

NORMAL 
ACCEZEEWTION 

g's 

?LIGHT PATH 
ANGLE 

Deg. 

6e 

Deg. 

_______.---- 
22.s 

0 \ 
-- 

* -- eh -22.5- ---+I=-- ___---__- -~ -.---___ - 
12.5- 

0 WVWQ-+--J-~ 

-vAw L 

A’- 

-12.5- -- - 

12.5- 

(a) lb) 

Figure 7.4.5 Longitudinal responses to Gory, 2"s initial 
conditions in 4.57 m/set rms turbulence at 
304.8 meters altitude, speed -7 Mach 

(a) Perfect identification responses 
(b) ?4MAC respo:1ses, 'Jodels 6,7,8,10 



7-22 

P 

DegJsec. 

R 
Deg./set. 

P 
Deg. 

+ 
Deg. 

20- 

-2o- - 

5- 

0 

-5- 

22.5- 

IATERVL O- 
ACCELERATION 

g's -. S- 
2.5- ’ 

68 
0 

Deg. 
-2.5- 

1.5- 

6r 
0 

Jw. -1.5 

0 2 4 6 8 10 0 2 4 6 8 10 

(0) 
ttsec 1 

(b) 
t(sec) 

Figure 7.4.6 Lateral responses to 6Oc1, 2'fl initial conditions 
in 4.57 m/set rms turbulence, altitude 304.8 meters, 
speed .7 Mach 

(a) Perfect identification responses 
(b) MMAC responses, Models 6,7,8,10 



NORMAL 
:ELERATION 

g’s 

GIST PATH 
ANGLE 

Deg. 

be 
Deg. 

7-23 

-- - 

22.5- 

- 
- - 

o- ’ ___-_____-- 

-22.5- --_____-- -_. - 

I 
i 
i 

---- 
---. ___-- 

e---r- 

/“ 
lZ.!J- 

-12.5- 

- 12.5- o- _/i// _/---’ ..^_____ 
- / 

-12.5- + --- 
6.25- 

0 

c * --f------ 
-6.25- I I I I I I’I I 

40- 
I I I.1 I IvIL.JL I I I I I I 1 

0 5 10 20 30 0 5 to 20 30 40 0510 20 30 
t (set) t(sec) t(sec) 

(a) (b) (c) 

Figure 7.4.7 Longitudinal Responses to 6°~,20B initial conditions, 
1.22, m/set rms turbulence, altitude 304.8 meteqs, speed 
.7 Mach 

(a) MMAC responses, Models 6,7,8,10 
(b) MMAC responses, Models 7,8,18,19 
(c) MMAC responses, f4odels 6,8,18,19 



--..-. -....-.. -. 

7-24 

P 

DegJsec. 

5- 

R 

Deg./set. 0 

,. I 

P 
Deg. 

2.5-i 

0 

4 
Deg. 

LATERAL 
ACCELERATION 

g's 

Deg. 

Deg. 

Figure 7.4.8 Lateral responses to 6Ocx, 2Of3 initial conditions, 
1.22 m/set rms turbulence, altitude 304.8 meters, speed 
.7 Mach 

(a) MMAC responses, Models 6,7,8,10 
(b) MMAC responses, Models 7,8,18,19 
(c) MMAC responses, Models 6,8,18,19 



m(t), 
Longitudinal 

Model 7 

m(t), 
Lateral 
Model 7 

- -.-.-- _I-.- 

loo- I 

Lateral 

Model 8 

Model 6 

--. 

m(t), 
Lateral 
Model 10 

l- 
Probability of 

Longitudinal 
Model 7 

Probability 
of Lateral 

Model 7 

l- 
Probability of 

Longitudinal 
Node1 10 

-- 

d 
I I I I 8 I IIT. 1 

5 10 20 30 40 50 
tlsec) 

Probability 
of Lateral 

Model 10 

.I. 

l- 

0 d-- __- ____--.- .---c--' 
-u- 

0 5 IO 20 30 40 
tisec) 

Figure 7.4.9 Control Probability and m(t) responses to 6Oa, 2"~ 
initial conditions, 1.22 m/set L-TS turbulence, 
altitude 304.8 meters, speed .7 Mach 
MMAC Models 6,7,8,10 



7-26 

m(t) 

Longitudinal 
Model 8 

m(t), 
Longitudinal 

Model 18 

m(t), 
Lgnqitcdinal 

Model 19 

I' 

I /II/ I I ii ! 

Probability of 
Longitudinal 

Node1 7 

Probability of 
Longitudinal 

Model 8 

Probabiiity of 
Lonqitxdinal 

Xodel 18 

Probability of 
Longitudinal 

Model 19 

l- 

/ 

_---._. 

0 -- 
l- 

I 

O,L< 
0 5 10 20 30 

t(sec) 

loo- 
m(t), 

Lateral I I 
Model 7 

Lateral 
Yodel 19 

:n!t)' oti 

l- 
Probability 
of Lateral 

."!odel 7 

Frobability 
of Lateral 

Model 8 

Probability 
of Lateral 

Model 18 

Probability 
of Lateral I / 

Ilodel 19 

4 
0 I 

LLll-Ll- 
0 5 10 20 30 

tkec) 
Figure 7.4.10 Control Probability and m(t) responses to 6Q, 2“B 

initial conditions, 1.22 m/set rms turbulence, 
altitude 304.8 meters, speed .7 Mach 
MMAC Kodels 7,8,18,19 



7-27 

50- 
m(t), 

Longitudinal 
Model 6 

m(t), 
Longitudinal 

Model 8 

m(t), 
Longitudinal 

Model 19 

Probability of 
Longitudinal 

Model 6 

Probability of 
Longitudinal 

Model 8 

Probability of 
Longitudinal 

Model 18 

Probability of 
Longitudinal 

Model 19 

Probability 
of Lateral 

Model 19 

*-A 
0510 20 30 40 t(sec) 

Figure 7.4.11 Control Probability and m(t) 

ll’L ;.---.- --__ ---- 
l- 

h/ 

__- 

o-,- -___. 

l- I 

loo- 
I 

m(t), 
Lateral 
Model 6 

m(t) 
Latex-k 
Model 8 

loo- 
m(t), 

Lateral 
I4odel 18 

I 

loo- 
m(t) 

Lateral 
Model 19 I I 

Probability 
of Lateral 

Model 6 

Probability 
of Lateral 

Model 8 

Probability 
of Lateral 

Model 18 

l.- , 

0 L 
l- 

:;“\_ 
‘Y 

I 1 1 I 1 ’ ’ ’ ’ 
0 5 10 20 30 40 

t(secl 
responses to 6O~1, 2"8_ 

initial conditions, 1.22 m/set rms turbulence, 
altitude 304.8 meters, speed -7 Mach 
MMAC Models 6,8,18,19 



7-28 

a 
Deg. 

Q 
Deg./set. 

‘9 

Deg. 

NORMAL 
ACCELERATION 

g's 

FLIGHT PATi3 
ANGLE 

Deg. 

be 

Deg. 

LONG STICK 

Deg. 

-12.5-1 

-251 

-25 
6.25.-------- 

- - 

-6.251 ;’ 1 1 1 I ;Ji+-LF-IL 
05:10 20, , I20 i. 

t(sec) t(sec) 
(a 1 (b) 

Figure 7.4.12 Longitudinal responses to 

:  ,  :  i i, j ‘, ) 

0 5,lO. .20, , 0: 5 ,I0 20 
t(sec) tkec) 

(c 1 (d) 

elevator doublet command, 
no turbulence, altitude 304.8 meters, speed .7 Mach 

(a) MMAC responses, models 6,7,8,10 
(b) MMAC responses, models 6,7,8,20 
(c) i%IAC responses, models 7,8,18,19 
(d) MMAC responses, model$ 6,8,18,19 



- 

7-29 

so- 

m(t), I ., 
Longitudinal 

Model: 

m(t), 
Longitudinal : 

: 
: 

Model: ! i. ;;, 
8 

tjo- 1 !  

m(t),  
I  

Longitudinal 
Model: 

a 

m(t), 
Longitudinal 

Model: 

10 - 

Probability of 
Longitudinal 

Elodel : 

7 _ yfy=(y=Y::G 

,, --- ,.,,. 

Probability OF 
1- ! I', ..! ! 'I ! :'I",'. .I '.' 

Longitudinal 
Model: 

8 - 
- 

Probability of 
Longitudinal 

Model : 

Probability of 
Longitudinal 

Model: 

10 - 

0 5 IO 20 30 40 

(a) 
tkiec) 

s 

6 

20 - 

7 

8 - 

6 

i 0 .I 
50-I 

20 30 40 
(b) r(sec) 

Figure 7.4.13 Longitudinal- control probability and m(t) responses 
to elevator doublet coxunand, no turbulence, altitude 
304.8 meters, speed .7 Mach 

(a) MMAC responses,models 6,7,8,10 
(b) MMAC responses,models 6,7,8,20 



7-30 

so-, m(t), 
Longitudinal 

Model : 

I. 

m(t), 
Longitudinal 

Model: 

m(t), 
Longitudinal 

Model: 

ls 

m(t), 
Longitudinal 

Model: 
19 - 

Probability of 
Longitudinal 

Model: 

7 

Probability of 
Longitudinal 

Model: 

8 

Probability of 
Longitudinal 

Model: 

z! 

Probability of 
Longitudinal 

Model: 
19 - 

:. i:. !.. ; ; i. .i j 
.I : 

j_--h 

I ! ., ,. I. I ,.. I / ! , ‘I i. j I”, I i i , j I! i 

0, 
50~ i 1. 1 i :, j .. '.I 

I: .' ,' 

: 

L 

.,. !:.i ; i :. I I j i I. 

! 

0 

k 

so-,: @ 

0 
L 

/ .,, 
1 

oL 
0' .5 IO' 20 

t(sec) 
a 

6 

8 

18 - 

19 - 

6 

8 

18 - 

19 - 

t (set) 
b 

Figure 7.4.14 Longitudinal control probability and m(t) responses 
to elevator doublet command, no turbulence, altitude 
304.8 meters, speed .7 Mach 

(a) MMAC responses, models 7,8,18,19 
(b) MMAC responses, models 6,8,18,19 



a 
Deg. 

I 

Q 
DegJsec. 

8 
Deg. 

NOPNAL 
ACCELERATION 

g's 

FLIGHT PATH 
ANGLE 

Deg. 

Deg. 

LONG STICK 

Deg. 

:: 

-25-r ,,,I ..,:,I, ,, 'I .! .I : : , .I 

22.5" 

6.25; 

o.-+d..h 
: 

I- 
j,', .I, -6.2j' y j I '1' 

, , v, ~~~~~ 
I : 

0' :5qly1 I20 30 " 0 5'10 ' 20 30 6 5'10 
t(sec) t(sec) 

2.0.+(sety 

(a) (b) (cl 

Figure 7.4.15 Longitudinal responses to elevator doublet command, 
1.22 m/set rms turbulence, altitude 304.8 meters/speed 
.7 Mach 

(a) MMAC responses, models 6,7,8,10 
(b) MMAC responses, models 6,7,8,20 
(c) MMAC responses, models 7,8,18,19 



7-32 

Longitudinal 
Model: 

7 

m(t), 
Longitudinal 

m(t), 
Longitudinal 

Model: 

6. 

m(t), 
Longitudinal 

Wodel: 

10 - 

Probability of 
Longitudinal 

Probability of 
Longitudinal 

Model: 

l- s ! 
Probability of 

Longitudinal : I 

Nodel: 

l- 
Probability of 

Longitudinal 
Model: 

'L 

0 5 10 20 : 
ikxx) 

(a) 

--. .- 

i ,. -h 6 

0 -_I__- 
l- 

(b) t(secj 

Lz Jy7- 
0 5 10 20 30 

(Cl 
t(sec) 

Figure 7.4.16 Longitudinal control probability and m(t) responses 
to elevator doublet command, 1.22 m/set rms turbulence, 
altitude 304.8 meters, speed -7 Mach 

(a) MMAC responses, models 6,7,8,10 
(b) MMAC responses, models 6,7,8,20 
(c) MMAC responses, models 7,8,18,19 



7-33 

P 
Deg./set. 

R 

Deg./set. 

P 
Deg. 

207 
m(t), 

Lateral Model 
0 6 

-2.5: 
.I ;;: 

__--- A I 

m(t), 
Lateral Model 

10 

i _- 

6a 
Deg. 

6r 
Deg. 

-.5.- I 7-p-- 

6.25- 1, l :  

-6.25- I ,A&-& ----A 
3.75- 

2.5" : ,'- :':. : 

LATERAL STICK 

Deg. 
-2.5' 

I I I I I I I 
0 5 to 20 30 

t(sec) 

loo- 

OE 
loo-. 

& i .. : .’ I- ,: ’ 
_I. 

_‘. 
. 

iL!- 0 1 
l- 

oj&&+7 
0 5 to 20 30 

t(sec) 

0 
La 

0 5 to 20 30 
t(sec) 

Figure 7.4.17 Lateral respoixes .to aileron doublet command, 
no turbulence, altitude .304.8 meters, speed .7 
Mach, MMAC models 6,8,18,19. 



7-34 

sideslip angle (p-gust) perturbation. The Kalman filter states are ini- 

tially set to zero so that the initial perturbations are not readily 

estimated. The aircraft is not subject to turbulence. 

Figures 7.5.1, 7.5.2 and 7.5.3 show three sets of responses, corres- 

ponding to pitch rate, normal acceleration and lateral acceleration 

responses respectively. The experiments show the open-loop behavior of 

the aircraft, the perfect identification response, and two MMAC responses. 

Note the close correspondence of the MMAC responses to the perfect iden- 

tification response. The initial perturbations are eliminated quickly, 

so that, in the absence of turbulence, the aircraft reaches equilibrium 

flight. 

Figure 7.5.4 contains the trajectories of the longitudinal identi- 

fication probabilities of an MMAC simulation. Note the quick identifi- 

cation of the true model in less than one second, even though the Kalman 

filters are not correctly initialized and all measurements are noise- 

corrupted. The lag in proper identification corresponds to the lag in 

the Kalman filters correctly updating its state estimates. 

The second set of experiments corresponds to a repetition of the 

first experiments, now at cumulus level turbulence (4.57 m/s= rms). 

Figures 7.5.5, 7.5.6 and 7.5.7 contain the pitch rate, normal accelera- 

tion, and lateral acceleration responses of the aircraft. Again, note 

the similarity between MMAC controllers and the perfect identification 

controller. Figures 7.5.8 and 7.5.9 show the control probabilities for 
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the longitudinal and lateral system respectively, using a MMAC controller 

with hypotheses 10, 11, 12, 17. The lateral system erroneously identi- 

fies flight condition 10, a c1os.e neighbor of flight condition 11. The 

performance is hardly affected by this misidentification: 

Figures 7.5.10 and 7.5.11 show the control probabilities used 

in the MMAC controller with hypotheses 10, 19, 12, 17. The continuous 

transitions in the probabilities reflect the amount of excitation caused 

by the cumulus disturbances. No clear identification is obtained in 

the transient period. However, the aircraft responses are still satis- 

factory. 

The third set of simulations were conducted at zero turbulence. The 

Kalman filters were correctly initialized in these experiments. Fig- 

ure 7.5.12 shows the longitudinal responses of three MMAC systems. Fig- 

ure 7.5.13 shows the lateral responses of these systems; and Figure 

7.5.14 shows the control probabilities associated with these systems. 

Note the similarity in the responses, even though.the third MMAC system 

hypotheses are 6, 13, 16, 17, and the true aircraft is at flight con- 

dition 11. Checking the mismatched stability tables of Section 7.3, one 

sees that there are several unstable combinations possible with flight 

condition 11. Flight conditions 12 and 13 are unstable in the lateral 

system, as is flight condition 10 in the longitudinal system. .The 

differences in lateral system responses in the last simulation are due 

to a partial initial identification of model 13. The MMAC system corrects 
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this identification error in short order, never completely using model 

13 for control purposes. In the longitudinal system, no troubles were 

encountered when the unstable model 10 was included, since the identi- 

fication did not choose that hypothesis. 

Figure 7.5.15 contains three simulation responses to doublet stick 

commands: column (a) represents the longitudinal aircraft responses 

with perfect identification, column (b) represents the longitudinal air- 

craft responses with an MMAC controller using hypothesis models 10, 11, 

12 and 17, and column (c) represents the longitudinal aircraft responses 

with an MMAC controller using hypothesis models 10, 12, 17 and 18. No 

turbulence was included in these experiments. The simulations illustrate 

the close responses of the MMAC-controlled aircraft to the responses of 

the aircraft with perfect identification. The responses were similar 

even when the "true" hypothesis was not included in the MMAC system. 

Figure 7.5.16 also compares the performance of an MMAC-controlled system 

with a system using perfect identification. These two experiments were 

conducted with no turbulence, and the break frequency for the high-pass 

filters described in Chapter 5 was set at one radian per second. The 

performance of the perfect identification system and the MMAC system with 

hypotheses 6, 13, 17 and 19 are seen to be quite close, even though none 

of the MMAC hypotheses are similar to the true flight condition. This 

suggests that, in the absence of accurate hypotheses, the identification 

system chooses controllers which approximate the desired closed-loop 

responses. 

Figure 7.5.17 shows the evolution of the control probabilities in 

the MMAC experiments in Figures 7.5.15 and 7.5.16. Initially, there is a 
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quiet period with no information available so the MMAC identification does 

not choose any models. After five seconds, the pilot commands starts. Fig. 

ure 7.5.17(a) shows that the true model is correctly identified once the 

command starts. Figure 7.5.17 indicates that, in the absence of the true 

hypothesis, a close neighbor (flight condition 10) is identified with 

little effect on the aircraft responses, as evidenced by Figure 7.5.15(c). 

The identification is slower in this case, reflecting the fact that 

flight condition 10 is not the true flight condition. 

Figure 7.5.17(c) describes the evolution of the identification pro- 

abilities for an MMAC system with hypotheses 6, 13, 16, 17. The identi- 

cation converges to flight condition 13. Interestingly, the aircraft 

responses were very similar to those obtained under perfect identifica- 

tion, even though the hypothesis models were different from the true 

hypothesis. 

Figure 7.5.18 is a repetition of the experiments in Figure 7.5.15, 

using a break frequency in the high-pass filter of .1 radians per sec- 

ond. The three sets of responses can be virtually superimposed, even 

when the true hypothesis is not included. Figure 7.5.19 describes the 

longitudinal control probability and m(t) responses for the experiments 

in Figures 7.5.18 (b) and (c). When the true hypothesis (model 11) is 

included in the MMAC system, the identification scheme selects it 

during the doublet command. Once the command dies, (3* behavior is ob- 

served, wheremodel 10, corresponding to the largest @*, is identified. 

Figure 7.5.19 (b) shows uncertain identification between two close neigh- 

bors of the true hypothesis (models 10 and 12) during the command period, 
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followed by B*-identification behavior1 

Figure 7.5.20 describes the longitudinal MMAC response of the air- 

craft with hypotheses 10, 11, 12 and 17, and with hypotheses 10, 12, 17, 

18, when the aircraft is subjected to 1.22 m/s.ec rms turbulence. Again 

the responses of the aircraft when the true flight condition was a hypo- 

thesis are almost identical to the responses when the true flight condi- 

tion was not included as a hypothesis. Figure 7.5.21 shows the evolution 

of the control probabilities and the weighted sums of residuals (m(t)) for 

the longitudinal system. The presence of moderate turbulence provides in- 

formation to the identification system, as evidenced by the plots of the 

weighted sum of residuals. However, one should notice how close the 

traces of mitt) are for each hypothesis, indicating the limited amount 

of information available. When the MMAC hypothesis are models 10, 11, 

12 and 17, the MMAC correctly identifies model 11, but only when the 

pilot command starts. When model 11 is excluded, the MMAC identification 

converges on model 12, a close neighbor of model 11, again when the 

command starts. These experiments indicate that the presence of turbu- 

lence does not provide sufficient information to correctly identify the 

true hypothesis. Examining the traces of the mitt), this means that in 

the absence of pilot commands, turbulence alone does not create suffi- 

cient difference in the weighted sum or residuals to use for identifi- 

cation. 

Figures 7.5.23 and 7.5.22 show aircraft responses to doublet com- 

mands in the lateral system. The lateral pilot command system is based 
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on a model-following scheme. This scheme, described in Chapter 6, proved 

to be somewhat incompatible with the‘MMAC algorithm. When identification 

changes in the MMAC algorithm, the control gains from the model to the 

aileron and rudder commanded rates change also, as indicated in Chapter 6 

and Appendices G and H. Hence, although the reference values provided by 

the model remain unchanged with identification, the commanded aileron and 

rudder rates are affected. 

Figure 7.5.24 contains the control probability responses for these 

experiments. When the true model is included in the MMAC system, it is 

identified promptly during maneuvers, resulting in a good response, as 

seen in Figure 7.5.22b. In the absence of the true model, the identi- 

fication scheme chooses a close neighbor, model 12, which is mismatched 

unstable according to Section 7.3. The ensuing identification switches 

can do little to improve performance, as models 17 and 18 are also mis- 

matched unstable. The identification scheme eventually chooses model 10, 

the only stable choice, although the presence of the three unstable models 

disrupted performance considerably. This is an important example of how 

sensitive MMAC performance is with regards to the hypotheses used for 

identification. 

The experiments in this section support the conclusion that the MMAC 

identification system performs best under stick commands, rather than to 

turbulence excitation or gusts. The performance of the lateral control 

system was best at this altitude, since the model used in the model- 

following system corresponds closely to the test flight condition. Still, 
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the longitudinal identification system was more accurate than the lateral 

system. 

7.6 Simulations at 40,000 Feet (12192 meters) 

The experimental flight condition was flight condition 

18, corresponding to a speed of Mach 1.2, a supersonic flight 

condition. The aircraft was subjected to a 6O angle of attack 

and a 2O sideslip angle initial perturbation. Figure 7.6.1 show the longi- 

tudinal system responses for a perfect identification simulation, and 

two MMAC simulations. Figure 7.6.2 contains the corresponding lateral 

system responses. Figure 7.6.3 contains the control probability his- 

tories for the two MMAC simulations. 

The identification responses indicated in Figure 7.6.3 show good 

identification. The longitudinal identification erroneously prefers 

flight condition 19, a close neighbor of the true flight condition. The 

lateral identification system initially chooses flight condition 17, 

then it alters between flight condition 19 and 18 when 18 is a hypothe- 

sis. This accounts for the slight differences in performance between 

the two MMAC systems. Figure 7.6.4 contains the longitudinal responses 

of two MMAC systems, to longitudinal doublet stick commands; there is no 

turbulence in the experiments. Figure 7.6.4(a) used an MMAC system with 

hypothesis models 13, 17, 18, 19, while Figure 7.6.4(b) used models 12, 

13, 17, 19. Note the similarity in the responses for both experiments, 

even when the true flight condition is not a hypothesis. Figure 7.6.5 
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contains the evolution of the control probabilities and weighted sums of 

residuals m(t) for the longitudinal system. There is a substantial difference 

in the magnitudes of the weighted residuals m(t) for subsonic and supersonic 

flight conditions, although there is very little difference between the 

two supersonic conditions. The MMAC system correctly identifies flight 

condition 18 when it is a hypothesis. In its absence, it chooses flight 

condition 19, the other supersonic flight condition. 

Figure 7.6.6 is a repeat of the experiments described in Figure 

7.6.4 when a moderate level of turbulence (1.22 m/set rms) is intro- 

duced. The responses are again nearly identical. Figure 7.6.7 contains 

the evolution of the control probabilities and the weighted sum of re- 

siduals. The presence of turbulence in these simulations seem to con- 

fuse the identification algorithm, making it harder to differentiate be- 

tween the two supersonic hypotheses. However, the turbulence information 

is sufficient to differentiate between supersonic and subsonic hypotheses, 

as illustrated by the initial identification in Figure 7.6.7 b during 

the quiet period. 

Figures 7.6.8 and 7.6.9 describe the lateral system responses to a 

doublet command in the lateral system under no turbulence. The true hy- 

pothesis (model 18) is correctly identified, resulting in good perfor- 

mance. The substantial sideslip angle and lateral acceleration responses 

in Figure 7.6.8 a are also present in the supersonic experiments with 

perfect identification, shown in Chapter 6; they are a consequence of the 

model-following design employed, rather than a shortcoming of the MMAC. 
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In the absence of the correct hypothesis, Figure ,7.6.9 b indicates 

difficulty in identification. This difficulty is reflected in the bank 

angle response of Figure 7.6.8 b. The m(t) responses show that the 

only supersonic hypothesis (model 19) differs widely from the true hypo- 

thesis. This indicates a certain degree of inaccuracy present in the 

lateral identification system. 

Figures 7.6.10 and 7.6.11 describe a repeat of the previous lateral 

system slmulati'ons usi-ng 1.22 m/set rms .turbulence level. 

The system responses are qualitatively similar to the previous responses. 

The true hypothesis is correctly identified, although the presence of 

turbulence seems to confuse the identification near the end of the doublet 

command. When the true hypothesis is not present, two subsonic models 

(12 and 13) are identified. 

7.7 Discussion 

The performance of the MMAC control system is closely related to the 

accuracy of its identification algorithm. The experiments in these sec- 

tions lend support to several.conclusions. These experiments were con- 

ducted with three different sources of information: turbulence excita- 

tion, gust perturbations and stick commands. The identification system 

performance was best in response to stick commands. The presence of 

turbulence helped avoid the 6 * behavior mentioned in Chapter 4, but did 

not prove helpful in identifying the correct hypotheses. 
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The lateral system identification responses were poor overall, 

particularly when contrasted with the longitudinal identification re- 

sponses. The identification system seemed incapable of differentiating 

between supersonic and subsonic flight conditions, as well as stable or 

unstable controller combinations. Furthermore, the fixed-point design 

philosophy adopted in Chapter 5 proved to be ill-suited for implementa- 

tion in a multiple-model controller; the shifting identification resulted 

in uneven control as the feedforward gains switched, and the mismatched 

controllers were often unstable, indicating high sensitivity to the set 

of hypothesis models used. On the positive side, the true model was 

identified correctly when it was included as a hypothesis. 

The longitudinal control system was very tolerant of identification 

errors, unlike the lateral system. This is due partly to the controller 

designs of Chapter 5; one can see that, when the close neighbors of the 

actual flight condition are identified, the closed-loop responses of the 

aircraft is very similar to those obtained with perfect identification. 

This feature seems essential in the design of any future MMAC-type con- 

trol systems, since one can seldom assume that the true model is in- 

cluded among the set of hypothesis models. 
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CHAPTER 8 

PILOT SIMULATION EXPERIMENTS 

8.1 Introduction 

The MMAC simulations described in the previous chapters illustrate the 

sensitivity of the algorithm's performance to the particular set of 

hypothesis models used. Due to limitations in available storage and 

computation time, only a limited number of hypotheses is possible; this 

number was chosen to be four. It is unreasonable to expect that this 

number of hypotheses will be adequate for adaptive control of the F-8 

aircraft over its entire flight envelope. In order to test the performance 

of the MMAC system over the entire flight envelope, a scheduling algorithm 

was designed, based on rough altitude measurements. Using this algorithm, 

a engineer "pilot" was able to conduct tests of simulated flight using 

NASA Langley Research Center's nonlinear hybrid simulation of the F-8C 

aircraft. The experiments shown in this chapter are excerpts from the 

records of those simulation flights. 

8.2 The MMAC Model-Scheduling Algorithm 

The basic scheduling algorithm works at five-second intervals, using 

four hypothesis models; this number of models was chosen to reduce the 

time required for the MMAC real-time computations. The period was chosen 

to allow transientsin identification to die out. Every five seconds, the 

algorithm tries to find a model hypothesis older than 10 seconds whose lateral 

and longitudinal control probabilities are both less than .OOl. If it 
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succeeds in finding such a hypothesis, then it tries to replace it by 

a "better" one. Using a rough estimate of the current altitude together 

with the altitudes of the hypothesis models, the algorithm uses Table 

8.2.1 to determine the desired altitude of the new hypothesis. The 

dynamic pressures of the models with maximal longitudinal and lateral 

control probabilities are averaged to obtain a desirable dynamic pressure. 

The algorithm then replaces the undesirable hypothesis model by the model 

at the desired altitude whose dynamic pressure is closest to the desired 

dynamic pressure. Figure 8.2.1 represents a flow chart of the scheduling 

algorithm. 

The relevant data used for the MMAC algorithm is stored on-line for 

all possible hypotheses. The scheduling algorithm picks out four of 

these hypotheses to be the active hypotheses for periods of time. Every 

five seconds, it reviews the hypothesis identification to see if there are 

candidates which would make "better" hypotheses in the MMAC algorithm. 

Once a model is introduced as a hypothesis, it remains one for a least 

ten seconds; this provides ample time for the algorithm to identify it 

with positive probability if it is a likely hypothesis. Table 8.2.1 

represents a schedule of models which attempts to anticipate possible 

climbing or driving maneuvers by the pilot. 

In sum, this scheduling algorithm represents one feasible solution 

to the problem of extending the MM&C algorithm, using only four hypo- 

theses, so that it operates over the complete flight envelope. This 

algorithm is far from optimal; it represents a way of studying the MMAC's 
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Actual Altitude 
(feet) 

(.3048 m) 

o-5,000 

5,000-15,000 

15,000-25,000 

25,000-35,000 

TABLE 8.2.1 

ALTITUDE SCHEDULING TABLE 

Number of Current Hypotheses 
of'Altitude 

sea level 20,000 ft 40,000 ft 
(6,096 m) (.12,192 m) 

* * * 

* 2 or more * 

0 * * 

otherwise 

* * * 

* 2 or more * 

* * 0 

otherwise 

greater than 35,000 * * * 

Desired Altitude 
(feet) 

(.3048 m) 

0 

0 

0 

20,000 

20,000 

40,000 

40,000 

20,000 

40,000 

* indicates number is not relevant. 
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performance over the entire flight envelope, and it indicates guidelines 

on which to base better algorithms. 

8.3 Identification Experiments 

This section discusses the performance of the MMAC identification 

algorithm during pilot maneuvers. The probability of the various hypo- 

theses are initially equal in each experiment. Figure 8.3.1 shows the 

aircraft responses and the control probability evolution for the aircraft 

flying level at 6096 met. at a speed of Mach -83. The small longitu- 

dinal maneuvers provide information which identifies model 12, a "close 

neighbor" of the true flight condition. The absence of any lateral in- 

formation prevents the probabilities from changing. 

Figure 8.3.2 shows the aircraft responses and control probability 

evolution for the continuation of the experiments shown in Figure 8.3.1. 

The aircraft is flying level at 6096 met. at a speed of Mach .83. 

In this figure, small lateral maneuvers provide information to the iden- 

tification system to correctly identify model 12. The absence of longi- 

tudinal information maintains the longitudinal identification constant. 

Figure 8.3.3 shows the responses during a repetition of the experi- 

ment in Figures 8.3.1 and 8.3.2 using different hypotheses in the MMAC 

control system. The hypotheses in this experiment are models 11, 12, 

13 and 17. The aircraft is flying at level flight at an altitude Of 

6096 met. and a speed of Mach -82. The pilot first executes a series 

of small longitudinal maneuvers, then a series of lateral maneuvers. 
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Note the responses of the control probabilities to the information 

provided by the aircraft responses. The longitudinal identification 

system identifies model 12, as the true hypothesis, and the lateral 

identification system identifies model 13. The true flight conditions 

are "close" to both of these hypothesis models, lying somewhere in be- 

tween. 

Figure 8.3.4 shows the aircraft responses at an altitude of L3,106 

met. and a speed of Mach .87. The MMAC hypotheses are models 11, 12, 

13 and 17. The MMAC system identifies flight condition 17, which is 

very close to the actual flight condition, after the aircraft undergoes 

some maneuvers in both systems. 

Figure 8.3.5 shows the aircraft responses while the aircraft is at 

level flight, at an altitude of 60.96 met. and a speed of Mach .6. This 

corresponds exactly to flight condition 11. The MMAC identification con- 

verges to the correct hypothesis in both the lateral and longitudinal 

systems, once information is available. 

Figures 8.3.6 and 8.3.7 illustrate the operation of the model sched- 

uling algorithm as the airplane moves through its flight envelope. The 

center axis marks simultaneous instants of time in the four sets of 

responses. The aircraft is situated near 9144 met. altitude, at a 

speed near 1.1 Mach. The initial hypothesis models are 10, 11, 12 and 

15, which are subsonic models. Lateral maneuvers provide information 

to the identification system, leading to lowering model 10% probability 

near zero. The scheduling algorithm recognizes this, and replaces this 
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hypothesis by model 18, a supersonic flight condition at an altitude of 
':.. 

12192 met. The longitudinal system quickly identifies this new hypo- 

~~:~&sif, since it is close in actual speed. This result agrees with the 

observed behavior in Chapter 7, T .' : where the longitudinal identification 

" - ". system dxtinguished well between subsonic and supersonic hypotheses. 

I, The lateral identification system does not respond to this new hypothe- 

sis. Figure 8.3.6(a) shows a subsequent change in hypothesis models, 

replacing model 15 by a higher dynamic pressure model, model 17. This 

change does not affect current identification. 

Figure 8.3.8 shows the longitudinal and lateral control probability 

and m(t) responses while the aircraft decelerates from a speed of Mach .6 

to Mach -44 at an altitude of 6096 met. The initial MMAC hypotheses 

are models 18, 11, 12 and 17. As the aircraft decelerates, models 18 and 

17 are changed to models 13 and 10 respectively. Note the transition of 

the various control probabilities, from models 12 to model 11 to model 

10 as the aircraft decelerates. The longitudinal identification system 

does not identify model 10, seen by the magnitude of the m(t) response. 

Figures 8.3.9 to 8.3.12 show the airplane responses while the air- 

plane is diving from 6096 met to 2438 met, at speedabetween .5 Mach 

and -65 Mach. No turbulence is present in this simulation. The initial 

MMAC hypotheses are models 13, 11, 12 and 10. The scheduling algorithm 

replaces model 13 by model 5 and model 10 by model 6. As the airplane 

descends, the longitudinal system identifies models 10, 12 and 11 in 

that order, while the lateral system chooses models 11, 12 and 6 in that 
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order. The actual dynamic pressure of the aircraft is between 300 and 

400 pounds per square foot, making models 6 and 11 the closest hypothe- 

ses . One should notice that these are the two flight conditions which 

the identification system selects. 

Figures 8.3.13 to 8.3.16 represent maneuvers at an altitude between 

2440 and 3050 met, at a speed of Mach . 6,under no turbulence. This 

simulation is a continuation of the simulation in Figures 8.3.17 to 

8.3.12. This flight condition seems to be near models 6, 11 and 12 in 

the longitudinal system, as the identification switches between these 

three hypotheses. In the lateral system, models 6 and 11 are identified. 

The dynamic pressure of the actual aircraft ranges between 300 and 450 

lb/f& in the neighborhood of flight conditions 6, 11 and 12, which 

account for the shifting identification. 

Figures 8.3.17 to 8.3.20 represent the aircraft responses in a climb 

from 1525 met to 9150 met. under no turbulence at subsonic speeds. 

Figure 8.3.17 highlights the operation of the model-scheduling algorithm. 

Figures 8.3.18 and 8.3.19 show some pitching and banking maneuvers exe- 

cuted in the climb. Figure 8.3.20 shows the evolution of the control 

probabilities. As the aircraft picks up speed, the longitudinal identi- 

fication system follows the transitions from models 5 to 6 and 10 to 11 

to 12. The lateral scheme also transitions from 11 to 12. Note the 

scheduling of model 12 results in its identification by both systems. 

As the aircraft speeds up, model 17 replaces model 10 and model 19 re- 

places model 6, to provide for better hypotheses. 
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8.4 Tracking Experiments 

The experiments in this section show only the evolution of the con- 

trol probabilities and the global aircraft variables as the F-8C aircraft 

is flown throughout its flight envelope. The experiments shown are ex- 

cerpts from long simulations using an engineer "pilot" to fly the nonlinear 

simulation at NASA Langley. No turbulence was present in the simulation. 

The purpose of these experiments is to illustrate the way the identifi- 

cation algorithm tracks the aircraft across the flight envelope. 

Figures 8.4.1 and 8.4.2 describe aircraft responses during an accel- 

eration maneuver at 6096 met. altitude. The vertical line indicates 

a simultaneous time reference for both figures. The longitudinal iden- 

tification system seems to track the velocity changes accurately, 

evolving from models 10 to models 11 and 12 as the speed builds up. The 

lateral identification system does not track well at all, identifying, 

only model 10. 

Figures 8.4.3 and 8.4.4 show the aircraft responses during a decel- 

eration maneuver using the speed brake. The aircraft altitude is 6096 

met, and it decelerates from Mach .6 to Mach -38. Figure 8.4.4 shows 

the longitudinal identification system tracks the speed changes, shifting 

from models 12 to 11 to 10. The lateral identification system does not 

respond to these variations in speed. 

Figures 8.4.5 and 8.4.6 show aircraft responses during a dive from 

1829 met to 305 met altitude, reducing speed from Mach .8 to Mach .r;. 

The longitudinal identification system wavers between models 7 and 13, 
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as does the lateral identification system, while the aircraft speed is 

near -75 Mach. When the aircraft reduces speed, flight condition 7 (very 

close to the actual condition, with speed .7 Mach at sea level) is iden- 

tified in both systems. 

Figures 8.4.7 and 8.4.8 show the aircraft responses during a climb 

and acceleration maneuver, from 4572 to 7925 met altitude, and -36 ' 

to 1.02 Mach in speed. The hypothesis models in the MMAC system are 

models 10, 11, 12 and 13. The longitudinal identification system tracks 

the changing speeds very well, progressing from models 10 to 11 to 12 and 

13. The lateral identification system tracks hardly at all, consistently 

identifying model 10 throughout the simulation. 

8.5 Discussion 

The performance of the MMAC identification system in experiments 
. . 

using a engineer "pilot" is illustrated in the chapter. The pilot was cau- 

tioned against performing severe pitching or rolling maneuvers, recog- 

nizing an inherent deficiency in the MMAC identification system which 

arises from using strictly equilibrium level flight hypotheses. Overall, 

the longitudinal identification system performed well, tracking properly 

with minimal error the changes in the operating conditions of the air- 

craft. The lateral identification system did not track as well, per- 

forming best in equilibrium flight experiments. These results are sig- 

nificantwhen one considers the availability of only two sensors in the 

longitudinal system (pitch rate and normal acceleration) versus six 

sensors in the lateral system (yaw rate, roll rate, lateral acceleration, 

bank angle, aileron and rudder angle). 
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CHAPTER 9 

CONCLUSIONS 

9.1 Introduction 

In this chapter the main conclusions of this study will be sum- 

’ 

marized from different points of view. Some of the comments will 

refer to the MMAC algorithm as a general methodology for stochastic 

adaptive control, while other comments will refer to the performance 

of the MMAC algorithm in the context of controlling the F-8 aircraft 

under the general guidelines adopted with respect to available 

sensors and real time computational constraints. 

In the reading of this conclusion section the reader should keep 

in mind the time frame during which this study was conducted 

(April 1974 to September 1976), while this conclusions section is 

being written in final form in May 1978. New theoretical results 

are currently available; some were obtained as a direct consequence 

of this study. If these results had been available at the initiation of 

this study, and if incorporated in the MMAC design, the simulation 

results and the specific conclusions could have probably been 

vastly different. 

Finally, the reader should keep in mind the basic objective 

of this study: evaluate the concept of the MMAC algorithm as a pos- 

sible candidate for adaptive control for aircraft using the F-8 as 
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the test example. This repres.ents the first exhaustive study,.of 

the MMAC methodology for a'realistic problem. 

9.2 The MM7X Algorithm and the F-8 

Given the fact that an F-8 aircraft is currently being used as 

a test bed for digital-fly-by-wire demonstrations, including tests 

of failure management systems and advanced control laws, one may 

pose the question: 

Should the MMAC algorithm, as described in 

this report, be implemented for flight tests? 

The answer to this question is a clear NO. The algorithm as cur- 

rently constituted has severe deficiencies that must be corrected 

before any flight tests are undertaken. 

Specific Deficiencies 

The specific deficiencies of the described MMAC algorithm are: 

1) Pure handling qualities. These are more serious 

in the lateral axis than in the longitudinal 

axis. 

2) Unpredictable performance. In the case of 

typical maneuvers for a fighter aircraft, in 

both the longitudinal and lateral axes, the 

equilibrium flight models used in the MMAC 

algorithm are inadequate,and the response of 

the control system cannot be predicted. 
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3) There is no guarantee that the MMAC algorithm, 

as described in this report, will not result 

in aircraft instabilities for swere aircraft 

maneuvers over its flight envelope. 

9.3 Reasons for MMAC Deficiencies -I- 

The MMAC algorithm yields a very complex and nonlinear closed- 

loop feedback control system. As such it defies global analysis and 

it must be tested exhaustively by simulation. Throughout this study 

and subsequent analysis 1341, little insight has been obtained into the 

the global stability and performance characteristics of the MMAC al- 

gorithm. In general, the overall robustness of the algorithm, with 

respect to the following list of important design variables, is not 

well understood: 

1) Model selection 

2) Number of models in MMAC algorithm 

3). Nature and accuracy of sensors 

4) Changes in levels of wind turbulence 

5) Effects of changing sampling times 

6) Robustness of Kalman filters for state 

estimation and identification 

7) Level of persistent excitation 

8) Design, sensitivity, and robustness of the 

control'system. 

Based upon the theoretical and simulation studies carried out during 

this research, all of the above issues have to be considered in the 

design of the MMAC system. 
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9.4 How should the MMAC algorithm be evaluated? 

Even in the absence of global results this study has greatly 

contributed to the basic understanding of the MMAC algorithm. Its 

relative performance can only be judged in situations for which the 

degree of modelling error is not sufficiently severeas to invalidate 

the methodology employed. 

Since only equilibrium flight models were employed in the MMAC 

design,the robustness and performance of the MMAC algorithm can be 

evaluated for aircraft motions that are close to equilibrium flight. 

These are the results presented in Chapters 7 and 8 of this report. 

For the sake of exposition, the general region for evaluation is 

defined as maneuvering flight in which motion is as follows: 

(a) Longitudinal motion is restricted to about 

20° change in pitch about equilibrium flight. 

(b) Lateral motion 

change in bank 

flight 

There are two ways of 

MMAC system 

1) Identification: 

is restricted to about 30° 

angle about the equilibrium 

evaluating the performance of the entire 

If the aircraft is close to a 

particular flight condition, and this flight 

condition is included in the set of model hypo- 

theses, do the model probabilities converge to 

the "correct" flight condition? 
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2) Closed-Loop Response: If the aircraft i.s close 

to a particular flight condition; how does the 

MMAC response compare (under both deterministic 

and stochastic conditions) to that obtained if 

the flight condition were known exactly. 

Identification performance is easier to check than comparisons of 

closed-loop responses. On the other hand, evaluation through 

identification performance is not necessarily the most appropriate 

way of judging the performance of the closed-loop MMAC algorithm. 

The reason is that the actual aircraft dynamics, including the ef- 

fects of wind disturbances, are never identical to one of the models 

of the MMAC algorithm. Furthermore, the performance of the iden- 

tification algorithm is strongly dependent upon the existence of 

persistent excitation so as to overcome the B* -dominance effect. 

Closed loop aircraft performance is more difficult to 

evaluate, but it is the closed loop performance of any adaptive 

control system that matters. In the &MAC context one has to evaluate 

the overall response of the aircraft in any particular flight 

condition independent of the equilibrium flight models that are 

employed by the MMAC algorithm. 

With respect to the above two broad ways of evaluating perfor- 

mance, and subject to the restrictions on pitch and bank angles noted, 

it was concluded that 
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(al 

(b) 

The MM7VC algorithm is in general an adequate 

adaptive control algorithm and deserves 

further study. 

The longitudinal MMAC system performed much 

better than the lateral one, both with res- 

pect to identification and closed loop 

performance. 

9.5 The Lateral MMAC System 

The inferior identification and control performance of the 

lateral MMAC System can be attributed to several factors 

(a) It is difficult to obtain an estimate of key 

aerodynamic parameters, as influenced by 

changes in dynamic pressure, from the lateral 

dynamics. This has been demonstrated by the 

simulation studies in this report. In several 

instances the lateral MMAC system could not 

identify the most probable aircraft flight 

condition. The fact that one cannot obtain 

a great deal of information from the lateral 

dynamics is in agreement with the conclusions 

reported by Stein et al. [ 271. -- 

(b) The complexity of the Kalman filters as- 

sociated with the lateral dynamics, and the 

fact that fixed levels of wind turbulence 

were used to design the Kalman filters pre- 

cluded the careful tuning necessary to 

have state estimation errors that are con- 

sistent with theoretical predictions. It is 
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conjectured that the Kalman filters used for 

the lateral dynamics for several flight con- 

ditions are considerably in error. Poorly 

designed Kalman filters contribute to both 

state estimation errors and poor identifi- 

cation through convergence of probabilities 

to wrong postulated models. 

(c) The poor handling characteristics of the 

lateral MMAC system can be directly at- 

tributed to the fact that in the model 

following approach employed, a single 

constant velocity (that of flight condi- 

, tion 11) was used. This resulted in 

uncoordinated turns in other flight con- 

ditions, when a particular bank angle 

had to be followed. It is suspected that 

this shortcoming of the lateral flight 

control system introduced bias errors in 

the lateral Kalman filters during turning 

maneuevers, thus causing additional state 

estimation errors and impaired identifi- 

cation performance in the later MM7IC 

system. 

The inclusion of the actual inertial velocity V. in the model 

following control system for the lateral dynamics, and a subsequent 

redesign of the Kalman filters for the lateral dynamics should 

greatly improve the performance of the lateral identification and 

control system. This is due to the fact that the lateral MMAC 
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system performed well in the vicinity of flight condition 11, as 

demonstrated in the simulations presented in Chapters 7 and 8. 

9.6 The Longitudinal MMAC System 

The longitudinal MMAC system performed very well in both its 

identification accuracy and closed-loop performance throughout the 

flight envelope, subject to the pitch angle constraints stated. In 

almost all simulations presented the longitudinal control system 

correctly identified the correct flight condition when appropriate. 

Even more important whenever the actual flight condition was not 

included in the set of hypotheses a close neighbor (in a probabilistic 

sense) was identified, thus resulting in good closed loop performance. 

It is important to stress that in a great variety of simulations 

with the longitudinal MMAC system, the model hypotheses included 

several combination that were mismatched unstable. In other words, 

if the actual flight condition was i and a model j was included in 

the MM?K algorithm, then if model j was identified the resultant 

closed-loop system would become unstable. 

In all simulations the longitudinal MMAC system never consistently 

identified a mismatched unstable combination. In the absence of 

persistent excitations, the B* dominance effect sometimes could, 

increase the probability of a mismatch unstable combination; however, 
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this would immediately cause an eyci,tation and in the next measurement 

the mismatch unstable combinatfon would be rejected. This extremely 

valuable property of the MMAC system can be evidenced by all piloted 

simulations, a subset of which has been presented in Chapter 9. 

Although the longitudinal Mt4AC system performed quite well 

under all simulations performed, its performance could be improved 

further. These improvements would substantially increase the operating 

conditions in terms of increased allowable pitch angle longitudinal 

maneuvers. The main shortcomings of the current longitudinal MMAC 

design are as follows: 

(a) Bias errors are introduced in the longitudinal 

Kalman filters. These bias errors are intro- 

duced through the phugoid mode which was not 

included in the short period dynamics models. 

Further bias errors are introduced through 

inadequate treatment of the elevator trim in 

the Kalman filter design. The longitudinal 

Kalman filters should be redesigned so that 

they estimate the elevator trim through the 

use of the elevator position measurements. This 

would enhance the overall accuracy of the 

longitudinal state estimates, improve the ro- 

bustness of the individual Kalman filters, 

further improve the identification accuracy 

and improve the closed-loop performance. 
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(b) Persistent (subliminal) excitation through 

elevator motion, through signals known to 

the Kalman filters, should further tiprove 

the identification accuracy of the longi- 

tudinal MMAC system. Such a persistent 

excitation would overcome the issue of lack 

of information available for identification, 

and will alleviate the B* -dominance 

phenomenon. 

(c) All longitudinal Kalman filters were designed 

using a fixed level of turbulence correspon- 

ding to flight through cumulus clouds. This 

corresponded to increased bandwidth in all 

Kalman filters. When the aircraft was flying 

either in the absence of turbulence or 

moderate turbulence, the accuracy of the 

' longitudinal variable estimates, and of the 

identification, degraded because more sensor 

noise passed through the high bandwidth Kalman 

filters than necessary. Future attention 

should be given to enlarging the set of 

hypotheses (and models) in the overall MMAC 

algorithm by having more than one turbulence 

level. This would not necessarily require an 

increase in the number of models operating 

in real time, but could be accomplished through 

modification of the model scheduling algorithm, 

described in Chapter 8, to include a gross 

decision on the level of turbulence actually 

present. 
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(d) The handling qualities of the longitudinal 

MMAC system can be improved through changes 

in the control gains, and by providing neutral 

aircraft stability. 

9.7 General Conclusions 

In this section a summary of general conclusions related to the 

MMAC algorithm is presented. The subsequent discussions represent 

knowledge gained from theoretical and simulation investigations from 

the specific F-8 study and additional theoretical and simulation 

investigations carried out subsequent to the F-8 study. 

a) Structural Advantages: The implementation of the MMAC 

algorithm by parallel banks of Kalman filters is appealing because 

of the advances made in microprocessor technology. One can vi- 

sualize a single chip for implementing eachKahan filter, and 

another for, the subsequent calculations of the identification pro- 

babilities and calculation of the adaptive control. The lack of 

any iteration -based calculations makes the concept appealing, 

since the total memory and real-time calculations can be precomputed. 

It should also be noted that the parallel maximum likelihood 

noninterative structure used by Stein et al. 127 1 has the same -- 

advantages. 

bl Identification Properties: As demonstrated in Chapter 4 

the identification probabilities can oscillate rapidly between 

alternate models in the presence of stochastic disturbances. Such 
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rapid transitions of the identification probabilities were not 

suspected before the initiation of this study. These tran- 

sitions are not necessarily bad, since the actuators will smooth the 

commanded controls. In the present study, the identification proba- 

bilities were low-passed, in an ad-hoc manner, so as to smooth them 

out. 

The rapid probability transitions can be often the result of 

erroneous initialization of the constant gainfGalman filters, and 

incorrect design of the digital Kalman filters. Accurate design of 

the digital Kalman filters is essential for the MMAC algorithm. 

The general issue of correct convergence of the MMAC algorithm 

under closed-loop operation remain an open theoretical question. 

The on-going doctoral thesis of Greene [34 J sheds some understanding 

on the qualitative properties of the closed-loop MM7VC algorithm, but 

theoretical results that guarantee the asymmptotic convergence of 

the correct model are not currently available. 

Recent results by Baram and Sandell [ 71,I: 351, have provided 

valuable information on the open-loop identification properties of -- 

the MMAC algorithm. These results indicate that the MMAC algorithm 

will converge to the nearest probabilistic neighbor in the presence 

of persistent excitations. This research provides a well defined 

metric (distance) that could be used to measure a "stochastic 

distance" between models, and it may be useful in selecting the model 

hypotheses that should be implemented in the MMK algorithm. It 
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should be stressed, however, that these results do not trivially 

extend to convergence properties of the closed-loop MMAC algorithm. 

cl Closed-Loop Control Properties: It should be stressed 

that the implementation of the MMAC algorithm is not limited to 

control designs obtained using the Linear-Quadratic methodology. 

Any method for designing the control system can be used in conjuction 

with the MMAC identification algorith. 

The specific MMAC algorithm presented in this report has a 

very special structure. In a regulator context the control u(t) 

is generated by 

l(t) = ; Pi(t)gi $A+) 
i=l 

(9.1) 

where Pi(t) are the model probabilities generated from the residuals 

of the kalman filters, gi are the control gains, and &(tlt) 

are the state estimates generated by the Kalman filters. It should 

be stressed that the control u(t) is very sensitive to Kalman filter 

errors, because of its double dependence on both the model proba- 

bilities Pi(t) and the state estimates $(tlt). Since the system -_ 

operates in a stochastic environment the MMAC algorithm may identify 

a wrong model for a few measurement; however, the state estimates 

of the wrong model may be grossly in error and this will also 

influence the generation of erroneous controls. 



9-14 

\ 

In aircraft applications the key state variables are measured 

accurately by gyros and accelerometers. For such problems simple 

low passing of sensor signals and perhaps the use of low-order 

,Luenberger observers and complementary Kalman filters can be used to 

generate an overall state estimate g(t). In this case, it appears 

that the control should be generated by 

N 
u(t) = 1 Pio~i(t&t) 

i=l 
(9.2) 

where the probabilities Pi(t) are still generated from the bank of 

detailed Kalman filters as described in this report. It is conjec- 

tured that the control law (9.2) will be more robust to errors in 

Kalman filter design than that given by (9-l), for the reason mentioned 

above. In this method, the Kalman filters would be used primarily 

for identification rather than for simultaneous identification and 

control. 

In summary, the MMAC algorithm deserves more study from both a 

theoretical and applied points of view. 
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APPENDIX A 

Linearized Dynamic Equations for the F-EC Aircraft 
at Various Flight Conditions 

The form of the system equation is 

. 
x=iz+Bl3+LE 

the longitudinal system, 

6 
ec 

For the lateral system, 

(A. 1) 

(A. 2) 

The A and B matrices are flight-condition dependent, and are listed - 
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in the following pages. The &matrices depend on the turbulence level, 

as discussed in Chapter 3, Section 4; see Section 3.4 for relevant 

equations defining &. 



FLIGHT CONDITION 5 

DYNAMIC PRESSURE 133PSP ( 6391 N/SQ.H) MACH 0.30 ALTITUDE 0 FT( 

A-IIATRIX 
-0.4726 -0.0004 -2.0290 

0.0 -0.0287 -19.4600 
1.0000 -0.0006 -0.8029 
1.0000 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 

!I 'RANSPOSE OF B-MATRIX 
0.0 0.0 0.0 0.0 12.0 

A-HATRIX 
-3.6756 0.3301 -25.7796 
-0.1575 -0.2985 1.0628 

0.1395 -0.9887 -0.2152 
1.0000 0.1404 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 

0.0 11.5500 4.2460 -25.7796 
0.0 0.5103 -1.8180 1.0628 
0.0951 0.0919 0.0474 -0.2152 
0.0 0.0 0.0 0.0 
0.0 -30.0000 0.0 0.0 
0.0 0.0 -25.0000 0.0 
0.0 0.0 0.0 -3.3490 

TRANSPOSE OF B-MATRIX 
0.0 0.0 0.0 0.0 30.0 0.0 0.0 

_ 0.0 0.0 0.0 0.0 0.0 25.0 0.0 

LONGITUDINAL SYSTEH 

0.0 -5.0455 -2.0290 
-32.2000 -2.5680 -19.4600 

0.0 -0.1153 -0.8029 
0.0 0.0 0.0 
0 ..o -12.0000 0.0 
0.0 0.0 -3.3490 

0.0 

LATERAL SYSTEM 



FLIGHT CONDITION 6 

DYNAMIC PRESSURE k16E'Si (19990 N/SO.H) MACH 0.53 ALTITUDE 0 FT( 0 X) 

LONGITUDINRL SYSTEN 
A'MATRIX . 

-0.7775 -0.0003 -7.09k 0.0 -1u.2500 
0.0 
LOOOd 

-0.0207 -8.7020 -32.2000 -0.9907 
-0.0002 -1.4520 0.0 -0.1902 

1.0000 0 .o. 0.0 0.0 0.0 
0.0 0. 0, 0.0 0.0 -12.0000 
0.0 0.0 0.0 0.0 0.0 

ITRANSPOSE OF B-MATMX 
0.0 o..o 0,o 0.0 12.0 d-0 

- 

LATERAL SYSTEM 
A-HATRIX 

-5.6968 0.0489 -61.8312 0.0 
-0:1920 -0.5495 4.7826 0.0 

0.0522 -0.9971 -0.3967 0.0543 
1.0090 0.0522 0.0 0.0 
0.0 0.0 0.0 : 0.0 
0.0 0.0 0.0 0.0 I: 
0.0 0.0 0.0 0.0 '. 

TRANSPOSE OF B-MATRIX 
0.0 0.0 0.0 0.0. ~ 30.0 aAl 0.0" 
0.0 -0.0 0.0 0.0 0.0 25.0 0.0 

. . 

32.4400 
1.6940 
0.0069 
0.0 

-30.00~00 
0.0: 
0.0 

I 

. 

-7.0970 
-8.7020 
-1.u520 

0. 0:. 
0.0 

-5.9170 

. . : . 

11.1000 -61.8312 
-5.1700 4.7826 

0.0707 -0.3967 
0.0 0.0 
a.0 0.0 

-25.0000 0.0 
0.0 ' -5.9170 

,. .< 



PLIGHT CONDITION 7 

DYNAllfC PRESSURE 726PSP (34886 N/SQ.H) HACH 0.70 ALTITUDE OF'P( 0 n) 

A-ttATRQX 
-0.9818 .-0.0003 -12.8300 
-0.0 -10.0500 -,o.. 0240 

1.0000 -0.0001 -2.0080 
1.0000 
0.0 2 o":o" 
-0.0 0.0 0.0 

TRbNSPOSE OF B-MATRIX 
0.0 a.0 0.0 0.0 12.0 

A-MATRIX 
-7.5552 -0.0837 -95.0785 
-0.2260 -0.7394 12.6424 

0.0335 -.,0.9978 -0.5520 
1.0000 0.0335 0.0 
0.0 0.0 0.0 
0":: 0":: 0.0 0.0 

TRANSPOSE OF El-MATRIX 
0.0 0.0 0.0 0.0 30.0 

LONGITUDINAL SYSTEU 

0.0 -23.4400 -12.8300 
-32.2000 1.0050 -10.0500 

0.0 -0.2330 -2.0080 
0.0 0.0 0.0 
0.0 -12.0000 0.0 
0.0 0.0 -7.8150 

0.0 

LATERAL SYSTEH 

0.0 48.2300 15.1900 -95.0785 
0.0 2.5290 -7.6390 12.6424 
0.0411 0.0114 0.0756 -0.5520 

0.0 0.0 0.0 0.0 -30.0000 @.O i-i 
0.0 0.0 -25.0000 0:O 
0.0 0.0 0.0 -7.8lSO 

0.0 0.0 
0.0 0.a 0.0 0.0 0.0 25.0 0.0 



FLIGHT CONDITION 8 

DYNAMIC PRESSURE 1098PSF (52762 N/SQ.M) MACH 0.86 ALTITUDE 0 FT( 0 Ml 

LONGITUDINAL SYSTEH 
A-MATRIX 

-1.1800 -9.0004 -20.9500 
0.0 -0.0249 -13.7800 
1.0000 -0.OQOl -2.6730 
l.OOQO 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 

TRANSPOSE OF B-?lATRIX 
0.0 0.0 0.0 0.0 12.0 

A-MATRIX 
-9.7841 
-0.2835 

0.0267 
1.0000 
0.0 
0.0 
Q.0 

TR?bNSPOSE OF B-MATRIX 
0.4 0.0 0.0 0.0 30.0 

-0.1619 -135.0130 0.0 53.5100 16.9500 -135.0130 
-0.9269 25.3940 0.0 2.6870 -8.5560 25.3940 
-0.9979 -0.7051 0.0335 0.0158 0.0664 -0.7051 

0.0268 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 -30.0Q00 0.0 0.0 
0.0 0.0 0.0 0.0 -25.0000 0.0 
0.0 0.0 0.0 0.0 0.0 -9.6010 

0.0 -33.0600 -20.9500 
-32.2000 1.5900 -13.7800 

0.0 -0.2592 -2.6130 
0.0 0.0 0.0 
0.0 -12.0000 0.0 
0.0 0.0 -9.6010 

0.0 

LATERAL SYSTEti 

0.0 0.0 
4.4 0.0 0.0 0.0 0.0 25.0 0.0 



FLIGHT CONDITION 10 

DYNAMIC PRESSURE 109PSF [ 5237 N/SO-M) MACH 0.40 ALTITUDE 20000 FT( 6095 M) 

LONGITUDINAL SYSTEM 
A-MATRIX 

-0.3189 -0.0000 -1.8790 0.0 -4.0600 
0.0 -0.0260 -23.9288 -32.2000 -2.0130 
1.0000 -0.0004 -0.5378 0.0 -0.0771 
1.0000 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 -12.0000 
0.0 0.0 0.0 0.0 

TRANSPOSE OF B-MKTRTX 
0.0 0.0 . 0.0 0.0 12.0 0.0 

LATERAL SYSTEM 
A-MATRIX 

-2.3503 
-0.1001 

6.1613 
1 .oooo 
0.0 
0.0 
0.0 

8.2705 -20.8324 0.0 9.1590 
-0.1969 0.8597 0.4 0.4085 
-0.9861 -0.1543 0.0765 0.0011 

0.1632 0.0 0.0 0.0 
. 0.0 

0.0 
2," 0.0 -30.0000 

0.0 0.0 
0.0 0.0 0.0 0.0 

-1.8790 
-23.9200 

-0.5378 

0":: 
-0.3318 

3.6550 -20.8324 
-1.5410 0.8597 

cJ.0320 -0.1543 
0.0 0.0 
0.0 0.0 

-25.0000 0.0 
0.0 -0.3318 

TRANS!?OSE OF B-MATRIX 
0.0 0.0 0-Q 0.0 30.0 0.0 0.0 
0.4 0.Q 0.0 0.0 0.0 25.0 '0.0 

1 

:  , .  

--1 -- ^_‘.. _,,,__ _ ._ 



FLIGHT CONDITION 11 

!XYNAMIC PRESSURE 254PSF (12205 N/SQ.H) llACH 0.60 ALTITUDE 20000 FT( 6095 M) 

LONGITUDINAL SYSTEH 
A- tlATRIX 

-0.4877 0.0000 -4.7890 0.0 -8.7430 -4.7890 
0.0 -0.0148 -13.8800 -32.2084 -1.0960 -13.8800 
1.0000 -0.0002 -0.8361 0.0 -0.1115 -0.8361 
1.0000 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 -12.0000 0.0 
0.0 0.0 0.0 0.0 0.0 -0.4977 

TRANSPOSE OF B-MATRIX 
0.0 0.0 0.0 0.0 12.0 0.0 

LATERAL SYSTEM 
A-MATRIX 

-3.3311 0.0827 
-0.1261 -0.3135 

0.0773 -0.9962 
1.0000 0.0775 
0.0 0.0 
0.0 0.0 
0.0 Q.0 

-U4.6241 0.0 20.6000 8.2570 -44.6241 
2.5009 0.0 1.1510 -3.4570 2.5889 

-0.2306 0.0515 0.0037 0.0456 -0.2306 
0.0 0.0 0.0 0.0 0.0 
0. 0 0.0 -30.0000 0.0 0.0 
0.0 0.0 0.0 -25.0000 0.0 
0.0 0.0 0.0 0.0 -0.4977 

TRANSPOSE OF B-MATRIX 
0.Q 0.0 0.0 0.0 30.0 2::: 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 
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FLIGHT CONDITION 12 

DYNAMIC PRESSURE 434PSF (20854 N/SQ.M) MACH 0.80 ALTITUDE 20000 PT( 6095 H) 

LONGITUDINAL SYSTEH 
A-MATRIX 

-0.6696 0.0006 -9.0100 0.0 -15.7700 
0.0 -0.0136 -14.1100 -32.2000 -0.4330 
1.0000 -0.0001 -1.2140 0.0 -0.1394 
l.OQOO 0.0 0.8 0.0 0.0 
0.0 0.0 0.0 0.0 -12.0000 
0.0 0.0 0.0 0.0 0.0 

TRANSPOSE OF B-MATRIX 
0.0 0.0 0.0 0.0 12.0 0.0 

LATERAL SYSTEM 
A-MATRIX 

-4.6880 
-0.1526 

0.0458 
1.0000 
0.0 
0.0 
0.0 

-0.0237 -66.2474 0.0 32.8200 12.5800 
-0.4400 9.3009 0.0 1.8620 .-5.5400 
-0.9980 -0.3217 0.0387 0.0067 0.0514 

0.0459 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 -30.0000 0.0 
0.0 0.0 0.0 0.0 -25.0000 
0.0 0.0 0.0 0.0 0.0 

TRANSPOSE OF B-MATRIX 
0.0 0.0 0.0 0.0 30.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 25.6 0.0 

-9.0100 
-:4.1100 

-1.2140 
0.0 
0.0 

-0.6636 

66.2474 
9.3089 

-0.3217 
0.0 
0.0 
0.0 

-0.6636 



FLIGHT CONDITION 13 

DYNAMIC PRESSURE SSOPSF (26429 N/SQ.M) MACH 0.90 ALTITUDE 20000 FT( 6095 ti) 

A-MATRIX 
-0.7900 -0.0006 -12.7300 

0.0 -0.0140 -16.6400 
1 .oooo -0.0001 -1.4560 
1.0000 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 

TRANSPOSE OF B-MATRIX 
0.0 0.0 0.0 0.0 12.0 

A-MATRIX 
-5.7284 
-0.1812 

0.0393 
1.0000 
0.0 
0.0 
0.0 

TRANSPOSE OF B-HATRIX 
0.0 0.0 0.0 0.0 30.0 

-0.0773 -81.0659 
-0.5124 11.4848 
-0.9983 -0.3662 

0.0393 
0.0 ko" 
0.0 
0.0 

LONGITUDINAL SYSTEM 

0.0 -19.2700 -12.7300 
-32.2000 -0.6549 -16.6400 

0.0 -0.1519 -1.4560 
0.0 0.0 0.0 
0.0 -12.0000 0.0 
0.0 0.0 -0.7466 

0.0 

LATERAL SYSTEM 

0.0 36.5000 13.4500 -81.0659 
0.0 2.09 10 -6.1880 11.4848 
0.0344 0.0081 0.0475 -0.3662 
0.0 0.0 0.0 0.0 
0.0 -30.0000 0.0 0.0 
0.0 0.0 -25.0000 0.0 
0.0 0.0 0.0 -0.7466 

0.0 0.0 
0.0 0.0 0.0 0.0 0.0 25.0 0.0 



FLIGHT CONDITION 14 

DYNAMIC PRESSURE 978PSF (46995 N/SQ.H) MACH 1.20 ALTITUDE 20000 PT( 6093 n) 

LONGITUDINAL SYSTEM 
A-MATRIX 

-0.4149 0.0006 -43.0400 0.0 -25.2500 -43.0400 
0.0 -0.0020 -16.6800 -32.2000 -0.8813 -16.6800 
1.0000 0.0000 -1.5880 0.0 -0.1647 -1.5880 
1.0000 0.0 0.0 

E 
0.0 0.0 

0.0 0.0 0.0 -12.0000 0.0 
0.0 0.0 0.0 0.0 0.0 -0.9955 

TRAtdSPOSE OP B-IIATRIX 
0.0 0.0 0.0 0.0 12.0 0.0 

LATERAL 
A-HATRIX 

-5.0204 -0.0982 -128.0840 0.0 
-0.0851 -0.7923 17.1258 0.0 

0.0259 -0.9985 -0.4844 0.0258 
1.0000 0.0260 0.0 0.0 
ikx 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 X:8 0.0 

SYSTEH 

22.0500 11.3400 -128.0840 
0.7944 -3.2930 17.1258 
0.0059 0.0177 -0.4844, 
0.0 0.0 0.0 

-30.0000 0.0 0.0 
0.0 -25.0000 0.0 
0.0 0.0 -0.9955 

TRANSPOSE OF B-EIATRIX 
0.0 0.0 0.0 0.0 30.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 25.0 0.0 



PLIGHT CONDITION 15 

DYNAMIC! PRESSURE 135k'SF ( 6487 N/SQ.M) NACH 0.70 ALTITUDE rCOOO0 FT( 12191 fl) 

LONGITUDINAL SYSTEH 
A-MATRIX 

-0.2719 0.0006 -2.8930 0.0 -5.4080 
0.0 -0.0090 -23.2000 -32.2000 -1.2470 
1.0900 -0.0002 -0.4433 0.0 -0.0584 
1 .oooo 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.8 -12.0000 
0.0 0.0 0.0 0.0 0.0 

TWiNSPOSE OF B-MATRIX 
0.0 0.0 0.0 0.0 12.0 0.0 

LATERAL SYSTEH 
A-MATRIX 

-1.6739 0.1486 -27.1511 0.0 12.0700 
-0.0679 -0.1585 1.8334 0.0 0.6412 

8.1226 -0.9921 -0.1235 0.0471 0.0017 
1.0000 0.1234 

0.0 ::o" 
0.0 0.0 

0.0 0.0 -3o,oooo 

60:: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

TRANSPOSE OF B-MATRIX 
0.0 0.0 0.0 0.0 30.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 25.0 0.0 

-2.8930 
-23.2000 

-0.4433 
0.0 
0.0 

-0.5421 

4.9210 -27.1511 
-2.0670 -1.8334 

0.0251 -0.1235 
0.0 0.0 
0.0 0.0 

-25.0000 0.0 
0.0 -0.5421 



FLIGHT CONDITION 16 

DYNAMIC PRESSUAE 176PSF ( 8457 N/SQ.fl) ' MACH 0.80 ALTITUDE 40006 FT( 12191 tf) 

LONGITUDINAL SYSTEM 
A-flATRIX 

-0.3297 0.0007 -4.0010 
0.0 -0.0102 -18.9200 
1 .ooffo -0.0001 -0.5358 
1.0000 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 

TRANSPOSE OF 8-flATRIX 
0.0 0.0 0.0 0.0 12.0 

A-tlATRIX 
-1.943rc 0.09s7 
-0.0742 -0.1885 

8.0937 -0.9952 
1.0000 a.0940 
0.0 0.0 
0.0 0.0 
0.0 0.0 

TRANSPOSE OF B-MATRIX 
0.0 0,o Ok0 0.0 
0.0 0.0 0.0 0.0 

0.0 -7.3630 -4.0010 
-32.2000 -1.1270 -18.9200 

0.0 -0.0657 -0.5358 
0.0 0.0 0.0 
0.0 - 12.0000 0.0 
0.0 0.0 -0.6 196 

0.0 

LATERAL SYSTEM 

34.7524 0.0 15.6700 6.2860 -34.7524 
3..3114 0.0 0.8758 -2.6880 3.3114 

-0.1420 0.0413 0*0025 0.0278 -0.1420 
0.0 0.0 0.0 0.0 0.0 
0.0 0.0 - 30.0000 0.0 0.0 
0.0 0.0 0.0 -25.0000 0.0 
0.0 0.0 0.0 0.0 -0.6196 

38.0 0.0 0.0 
0.0 25.0 0.0 



FLIGHT CONDITION 17 

DYNAMIC PRESSURE 223PSF (10715 N/SQ.M) HACH 0.98 ALTITUDE 40000 FT( 12191 M) 

LONGITUDINAL SYSTEM 
A-MATRIX 
: -0.4018 -0.0008 -5;8!i80 '.O.O -9.2880 -5.8580 

o..o -0.0113 -23.hOOO -32.2000 -1.0480 -23.4000 
1.0000 -0.0001 -0.6532 0.0 -0.0729 -0.6532 
1.0000 0.0 0.0 0.0 0.0 

0.0 0.0 
00:x 

-12.0000 0.0 
0.0 0.0 0.0 -O'.'O -0.6970 

TRANSPOSE QF B-HATRIX 
0.0 6+l 0.0 0.0 12.0 

A-!fYATRIK 
-2.6459 0.0167 -43.3851 
-0.0987 -0.2240 4.9200 

0.0743 -0.9968 -0.1596 
1.0000 0.0744 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 

0.0 

LATERAL SYSTEi'l 

0.0 19.4000 7.2990 -43.3851 
0.0 1.7150 -3.1440 4.9200 
0.0368 0.0033 0.0279 -0.1596 
0.0 0.0 0.0 0.0 
0.0 -30.0000 0.0 0.0 
0.0 .d.o -25.0000 0.0 
0.0 0.0 0.0 -0.6970 

TRhNSPOSB OF &-HATRIX 
0.0 0.0 0.0 0.0 30.0 0.0 .(I.0 : ~ :, 
.o.o 0.0 0.0 0.0 OiO 25.0 0.0 



RIGHT CONDITION 18 

DYNAMIC PRESSURE 397PSF (19077 N/SQ.H) MACH 1.20 ALTITUDE 40000.FT( 12191 M) 

LONGITUDINAL SYSTEU 
A-MT RIX 

.a-0.2798 0.0001 -21.6900 0.0 -13.4900 
SC. 0.0 -0,0013 -23.0000 -32.2000 0.8560 

1.0000 0.0 -O-.7761 0.0 -0.0867 
1 .oooo 
0.0 ::6" 

0.0 0.0 0.0 
0.0 0.0 -12.0000 

0.0 0.0 0.0 o..o 0.0 

TRANSPOSE OF B-MATRIX 
0.0 0.0 0.0 0.0 12.0 0.0 

A-MATRIX 
-2.6763 
-0.0868 

0.0492 
1.0000 
0.0 
0.0 
0.0 

LATEHAL SYSTEH 

0.0141 -65.8833 0.0 14.1600 6.3540 -65.8833 
-0.3714 8.6148 0.0 0.6752 -2.3340 8.6148 
-0 .'99%3 -0.21OO 0.0276 0.0024 0.0153 -0.2100 

0.0493 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 -30.0000 0.0 0.0 
0.0 0.0 0.0 0.0 -25.0000 0.0 
0.0 0.0 0.0 0.0 0.0 -0.9294 

-21.6900 
-23.0000 

-0.7761 
0.0 
0.0 

-0.929-4 

;R;NSP;S; OF B-MATRIX 
0.0 0.0 30.0 0.0 0.0 

0:o 0:o 0.0 0.0 0.0 25.0 0.0 

. . 
I 



FLIGHT CONDITION 19- 

DYNAtlTC PRESSURE 537PSF (25804 N/SQ:H) MACH 1.40 ALTITUDE 40000 FT( 12191 M) 

LONGITUDINAL SYSTEN 
A-MATRIX 

-0.2970 0.0001 -25.2100 0.0 -14.3100 -25.2100 
0.0 -0.0030. -29.7200 -32.2000 1.1230 -29.7200 

L l.QOOO -0.0000 -0.7770 0.0 -0.0861 -0.7770 
1.0000 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 -12.0000 0.0 
0.0 0.0 0.0 0.0 0.g T.1. 0840 I 

TRANSPO SF, OF B-MATRIX 
0.0 0.0 0.0 0.0 12.0 0.0 

LAT.hRAL SYSTEN 
A-HATRIX 

-2.6733 0.0139 -05.9576 0. .o. 13.2700 6.1350 -85.9576 
-0.1138 -0.3995 

0.0477 -0.9984 
1.0000 0.0478 
0.0 0.0 
0.0 0.0 
0.0 0.0 

TRANSPOSE OF B-PIATRIX 
0.0 0.0 0.0 0.0 
0.0 0.0 0.0 .o.o 

7.4019 0.0 
-0.2224 0.0237 

E 
0.0 
0.0 

0.0 
0.0 0":: 

jo.o- 0.0 ‘0.0 
,O+O 25.0 0.0 

0.3848 -2.3750 7.4019 
0.0024 0.0128 -0.2224 
0.0 0.0 0.0 

-30.0000 0.0 0.0 -25.0000 ::i 
0.0 060 , -1.0840 

k 
_ 



PLIGHT CONDITION 20 

DYNAMIC PRESSURE 703PSF (33781 N/SQ.H) HACH 1.60 ALTITUDE 40000 PT('l2191 Cl) 

LONGITUDINAL SYSTEH 
A-HATRIX 

-0.3028 0.0000 -27.8500 0.0 -15.7100 -21.8500 
0.0 -0.0080 -38.6900 -32.2000 1.3800 -38.6900 
1.0000 -0.0~00 -0.7656 060 -0.0847 -0.7656 
1.0000 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 -12.0000 0.0 
0.0 0.0 0.0 0.0 0.0 -1.2390 

TRANSPOSE OF B-MATRIX 
0.0 0.0 0.0 0.0 12.0 0.0 

LATERAL SYSTER 
A-MATRIX 

-3.0361 
-0.0977 

0.0360 
1 .oooo 
0.0 
0.0 
0.0 

-0.0152 -99.7334 0.0 12.4600 5.9800 -99.7.334 
-0.4147 6.5254 0.0 0.0987 -2.4240 6.5254 
-0.9990 -0.2407 0.0207 0.0022 0.0109 -0.2407 

0.0360 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 -30.0000 0.0 070 
0.0 0.0 0.0 0.0 -25.0000 0.0 
0.0 0.0 0.0 0.0 0.0 -1.2390 

‘1’ T! h El S P 0 S A OF t?-M ATPTX 
0 . c 0 . G 0.0 4.c .30.0 0.0 c.0 
3 . 0 0 . !! 0 . C O.C. o.,o 25.0 0.0 



where 

B-l 

APPENDIX B 

Reduced Short-Period kdels for Longitudinal Dynandcs 

of the F-SC Aircraft 

The reduced equations are of the form 

a 
X= t x= 6 

6 
ec 

e 

w , 

(B.1) 

(B.2) 

Matrices & and g are flight-condition dependent, and are listed 

on the follcming pages. The @natrix depends also on the turbulence 

level; see Secticra 3.4 for relevant equations. 



PLIGHT CONDITION 5 

DYNAFlIC PRESSURE 133PSP ( 6391 N/SQ.N) MACH 0.30 ALTITUDE 0 FT( OH)., ,' ; 

LONGITUDINAL SYSTEN - REDUCED STATE 

A-HATRIX 
-0.4726 -2.0290 -5.0455 0.0 

1.0000 -0.8029 -0.1153 0.0 
0.0 0.0 -12.0000 0.0 
0.0 0.0 0.0 -3.3490 

TRANSPOSE OF B-MATRIX 
0.0 0.0 12.0 0.0 

Y N 

FLIGHT CONDITION 6 

DYNAMIC PRESSURE 416PSF (19990 N/SQ.li) MACH 0.53 ALTITUDE 0 FT( 0 HI 

LONGITUDINAL SYSTEM - REDUCED STATE 

A-HATRIX 
-0.7775 -7.0973 -14.2500 0.0 

1.0000 -1.4520 -0.1902 9.0 . . . 

0.0 0.0 -12.0000 0.0 
0.0 0.0 0.0 -5.9170 

TRANSPOSE OF B-HATRIX 
0.0 0.0 12.0 3.0 



PLI&T CONDITION 7 

DYtiAHIC PRZSSURE 726PqP (34985 N/SC.M) dACH 0.70 ALTITUDE 0 PT( 0 n) 

LONGITUDINAL SYSTEN - REDUCED STAT!? 

A-MATRIX 
-O.YBliJ -12.8300 -23.4400 0.0 

1 .oooo -2.0080 -0.2330 0.0 
0.0 c. 0 -12.0000 0.0 
0.0 0.0 0.0 -7.8150 

TRANSPOSE CF B-HATRIX 
0.0 0.0 12.0 0.0 

FLIGHT CONDITION 8 

DYNAMIC PRESSURE 109SPSP (52762 N/SQ.M) HACH 0.86 ALTITUDE 0 FT( 

LONG.ITUD~NAL SYSTEA - kiEDUCPD STAT2 

A-MATRIX 
-1.1800 -20.9500 -33.06co 0;o , , . '. 

l.Q,OOO. -0.2592 0.0 
0.0' 

-2.6730 
0.0 -12.otioo 0.0: i ,r. 

0.0 0.0 0.0 -9.6010 
: ; _" ~' _ __ 

TRANSPOSE OF R-MATRIX 
0.0 0.0 12.0 0.0 

0 U) 



PLIGHT CONDITION 10 

DYNAMIC PRESSURE 109PSP ( 5237 N/SQ.M) NACH 0.40 ALTITUDE 20000 FT( 6095 U) * 

LONGITrJDINAL SYSTEM - REDUCED STATE 

A-MATRIX 
-0.3189 -1.8790 -4.0600 0.0 

1.0000 -0.5378 -0.0771 0.0 
0.0 0.0 -12.oc)oo 0.9 
0.0 0.0 0.0 -0.3318 

TRANSPOSE OF B-MATRIX 
0.0 0.0 12.0 0.0 

FLIGHT CONDITION 11 

DYNAMIC PHl!SSURE 254PS-F (12205 N/SQ.B) HACH 0.60 ALTITUDE 2cIOOO I'T( 6095 M) 

-LONGITUDINAL SYSTEM - RPDIJCED STATE 

A-IYATRTX 
-0.4877 -4.7890 -8.7430 0.0 

.l .oooo -0.8361 -0.1115 0.0 
- 02 0 0.3 0.0 -12.0000 0.0 -0.,4977 9.0 

:: i .' ,, _ 
TRA'NSPOSE CF B-MATRIX 
0.0 0.0 12.0 0.0 



FLIGHT CONDITION 12 

DYNAMIC PBBSSORE' 434PSF (20854 N/SQ.H) HACH 0.80 ALTITUDE 20000 FT( 6095 H) 

LONGITUDINAL SYSTEH - REDUCED STATE 

A-MATRIX 
-0.6696 -9.0100 -15.7700 0.0 

1 l oooo -1.2140 -0.1394 9.0 
0.0 0.0 -12.OOCO 0.9 
0.0 0.0 0.0 -0.6636 

TRANSPOSE OF B-JIATRIX 
0.0 0.0 12.0 0.0 

.?LIGHT CONDITION 13 

DYNABIC PRESSURE 550PSF (26429 N/SQ.H) MACH 0.90 ALTITUDE itlOO PT( 6095 H) 

LONGITUtiINAL SYSTEM - REDUCED STATE 

A-MATRIX 
-0.7900 -12.7300 -19.2700 0. c 

1 .oooo -1.4560 -0.1519 0.0 
0.0 0.0 -12.@000 0.0 
0.0 0.0 0.0 ~q.7466 

TRANSPOSE CP B-HATRIX 
0.0 0.0 12.0 0.0 



-- 

FLIGHT CONDITION 14 

DYNAMIC PRESSURE 978PSP (46995 N/SQ.M) HACH 1.20 ALTITUDE 20000 FT( 6095 a) 

LONGITUDINAL SPSTEH - RISDUCED STATE 

A-t¶ATRIX 
.-o-4149 -43.0400 -25.2500 0.0 

1.0000 -1.5880 -0.1647 0.0 
0.0 0.0 -12.0000 0.0 
0.0 0.0 0.0 -0.9955 

TRANSPOSE OF B-HATRIX 
0.0 0.0 12.0 0.0 

PLIGHT CONDITION 15 

W 
b 

DYNAHIC PRESSURE 135PSP ( 6487 N/SQ.H) HACH 0.70 ALTITUDE 40000 FT( 12191 H) 

LONGITUDINAL SYSTEtl - REDUCED STATE 

A-MATRIX 
-0.2719 -2.0930 -5.4080 0.0 

1 .oooo -0.443.3 -0.0584 0.0 
0.0 0.0 -12.0000 0.0 
0.0 0.0 0.0 -0.5421 

TRANSPOSE OF B-HATRIX 
0.0 0.0 12.0 0.0 



FLYGHT CONDITION 16 

DYNAHIC PRESSURE 176PSF ( 8457 N/SQ.?l) WACH 0.80 ALTITUDE 40000 FT( 12191 M) 

LONGITUDINAL SYSTEH - REDUCED STATE 

A-MATRIX 
-0.3297 -4.0010 -7.3630 0.0 

1 .oooo -0.5358 -0.0657 0.0 
0.0 0.0 -12.0000 0.0 
0.0 0.0 0.0 -0.6196 

TRANSPOSE OF B-MATRIX 
0.0 0.0 12.0 0.0 

W  

!I 

FLIGHT CONDITION 17 

DYNAMIC PRESSURE 223PSF (10715 N/SQ.H) UACH 0.90 ALTITUDE 40000 FT( 12191 H) 

LONGITUCINAL SYSTEN - REDUCED STATE 

A-RATRIX 
-0.4018 -5.8580 -9.2880 0.0 

1 .oooo -C.6532 -0.0729 0.0 
0.0 0.0 -12.0000 0.0. 
0.0 0.0 0.0 -0.6970 

TRANSPOSE OF B-ZATRIX 
0.0 0.0 12.0 0.0 



FLIGHT CONDITION 18 

DYNAHIC PRESSURE 397PSP (19077 N/SQ.fl) HACH 1.20 ALTITUDE 40000 FT( 12191 H) 

LONGITUDINAL SYSTEM - REDUCED STATE 

A-HATRIX 
-0.2798 -21.6900 -13.4900 0.0 

1.0000 -0.7761 -0.0867 0.0 
0.0 0.0 -12.0000 0.0 
0.0 0.0 0.0 -0.9294 

TRANSPOSE OF B-MATRIX 
0.0 0.0 12.0 0.0 

FLIGHT CONDITION 19 

DYNAMIC PRESSURE 537PSP (25904 N;/SQ.H) UACfi 1.40 ALTITUDE 40000 FT( 12191 a) 

LONGITUDINAL SYSTEH - REDUCBD STATE 

A-AATRIX 
-0.2970 -25.2100 -14.3100. 

1.0000 -0.7770 -0.0861 
i-0" 

0.0 0.0 -12.0000 010 
0.0 0.0 O.@ -1.0840 

TRANSPOSE OF B-MATRIX 
0.0 0.0 12.0 c-0 



FLIGHT CONDITION 20 

DYNAHIC PRESSURE 703PSP (33781 i/SQ.M) MACH 1.60 ALTITUDE 40000 FT( 12191 Cl) 

LONGITUDINAL SYSTEN - REDUCED STATE 

A-BATRIX 
-0.3028 -27.8500 -15.7100 0-c 

1.0000 -C.7656 -0.0847 0.0 
0.0 0.0 -12.0000 0.0 
0.0 0.0 0-C -1.2390 

TRANSPOSE OF B-MATRIX 
0.0 0.0 12.0 0.0 



C-l 

APPENDIX C 

The MMAC Identification Algorithm 

C.l Problem Statement 

Consider a linear, time invariant system with a parameter vector y. 

belonging to a finite set 1x1, x2, . . . . &I. Characterize the possible 

systems by the parameter subscript, by the vector difference equations 

X(t+l) = r#t) + B&t1 + hgt) (C.1) 

The measurement equations, as discussed in Chapter 4, are given by 

z(t) = pgt1 + g(t) (C.2) 

The state, control, and observation variables x(t), u(t) and z(t) are all 

elements of finite-dimensional Euclidean spaces. The vectors L(t), g(t), 

are mutually independent, white-noise gaussian random processes taking 

values in a finite dimensional space, with zero mean, and known covari- 

antes, expressed as 

$(t) = N(g; g(t) ) (C.3) 

g(t) = N(g; g(t)) (C.4) 

The elements ki, %, L+ and s are appropriately dimensioned linear 

matrices. Let Z(t) represent the sequence: 

z(t) 4 {u(O) , u(l) , . . . , g(t-1) ; z(l) , z(2), . ..I +I3 (C.51 

The first question posed is, given a sequence Z(t), what is the condi- 

tional probability density of E(t), (p(z(t) IZ(t))? 

Denote by Hi the event that the unknown parameters y, are equal 



c-2 

4 

to G. Let.H denote a random hypothegis variable, taking discrete values 

as H., i= 1, . . . . N. I Assume there-is a probability distribution at 

time-t, such that 

P(H = Hi at t(Z(t)) = Pi(t). (C.6) 

The probability density of H. can, be written as : 

p(HIZ(t)) = g 603 
i=l 

- Hi)Pi(t) .. 

Consider now p(x(t+l)lZ(t+l)). From the definition 'of marginal densities, 

'one obtains ,; 

: : ; ::. p(x(t+l) I'z(t+l))= ( - p(.x(t+l) , HI-Z(t+l))dH (C-,8) 
H 

From Bayes' Rule, it follows that 

:- p(x(t+l), HjZ(t+l)) = p($(t+l)jH, z(t+l))p(Hjz(t)) (C.9) 

Substituting equations (C.7) and (C-9) into (C.8) and integrating yields 

p(x(t+l)l z(t+l)) = 5 Pi(t+l)p(z#+l)l Hi, z(t+l)]. .(C.lO) 
i=l 

Consider p(x(t)l Hi, z(t)). Under the hypothesis that H = Hi, the system 

and observations described by equations (C.1) and (C.2) represent a 

linear, time-invariant system driven by Gaussian white noise with Gaussian- 

corrupted linear observations. Hence, the conditional distributions are 

also Gaussian, and can be obtained,using a Kalman filter [S 1. Hence, 

for each i, p(x(t) IH~,z(~)) can be constructed with a Kalman filter. 

Additionally, using Bayes' rule, the following. relationships,follow: 
.; ' 
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p(=(t) IHi, x(t))p(&(t) IHi, Z(t-1)) 
pb$t) IHi, z(t)) - (C.11) 

p(=(t)lIQ Z(t-1) 

P&(t) IHit Z(t-1)) * ~P(x(t)IHi, x(t-l))p(x(t;l)lHi, Z(t-l))*(t-1) 

(C.12) 

Since the conditional densities p@(t) Hi, Z(t)1 are Gaussian, they 

can be characterized by their means and covariances. Denote these as 

s(t) 4 E{x(t)lH., Z(t)) 1 (C.13) 

C.(tlt1 = E{($t)-s(t)) (E(t)-gi(t))'lHir Z(t) 1 (C.14) 

It is well known from the theory of Kalman filtering c32 1 that the s(t) are 

precomputable, according to the relations 

C.(t+llt) = &ctlt,$ + g(t) (dzi5) 

&(t*llt+l) = ci(t+llt) - ~(t+lJt)~rC&(t+lIt)~ + g(t) l-l* 

l C&(t+1lt) (C.16) 

With this notation, using equation (C.lO), the conditional mean of x(t) 

given Z(t) is 
N 

g(t) = E&(t) IZ(t)) = I- x(t)p(z(t))Z(t))d&t) = 
F =l 

Pi(t)&(t) 

K.l.3) 

Hence, using the output of N Kalman filters , each working with a different 

set of dynamics, H i, the conditional mean can be determined, The Kalman 

filter equations are: 

ci(t+llt) = A&(t) + l&z(t) (C.18) 
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$(t+1) = &(t+1lt) + &.(tlt)$~-l(t+l)(~(t+l)-C*~(t+~~t)) . 

(C.19) 

The remaining question consists of determining the probabilities 

Pi(t). Consider the conditional density p(HIZ(t)) defined by equa- 

tion (C.7). Use of Bayes' rule yields 

p(HIZ(t+l) = p(Hj$t+l), u(t), Z(t)) = 
p(H,=(t+l) (u(t), Z(t)) 

p(z(t+l)) /u(t) i z(tw 

p(++l)lH, Z(t) , $t))p(Hj Z(t), u(t),) 
= 

p(z(t+l)l z(t), u(t)) 
(C.20) ;' .; 

Since u(t) is a constant in this derivation, then 

p(HIZ(t), g(t)) = p(HIZ(t)). (C.21) 

Using equations (C.7) and (C.20), one obtains : . 

p(z(t+l)IHi, u(t) I Z(t)) 
1.1 : 

Pi(t+l) = Pi(t) (C.22) 
p(z(t+l) /u(t), s(t)) 

The density p(z(t+l) IH~, u(t), Z(t)) is Gaussian and can be cal- 

culated from the ith Kalman filter, as 

p(=(t+l)IHi, U(t), Z(t)) - N(~i~(t+llt)* ~(t+l)) (C.23) 

where 

s(t+l) = CJt+llt)C! + Q(t+1) (c. 24) 

The quantity Cgi(t+llt) is the predicted measurement at t+l and 

gi is the residual covariance associated with the ith Kalman filter. 

The density p(z(t+l) IZ(t), 
..T 

u(t)) can be computed using marginal 
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densities as: 

p(=(t+l)lZ(t),u(tn = (p(=(t+l), HlZ(t) I u(t))dH 

= Jp(z(t+l)IH,Z(t))p(HIZ(t))~ from Bayes’ rule 

= &.(t)p(z(t+i)IH 
j=l' - 

.I ;(t) , z(t) 1 .' (C.25) 
3 

using equation (C-7) and integrating. 

Thus, combining equations (C. 231, (C.24), and (C.25) with (C.221, 

one obtains 

p(z_(t+l) IHi,u_(t),Z(t)) 
Pi(t+l) = N pi(t) (C. 26)’ 

c Pj(t)p(z_(t+l) jH+(t),Z(t)) 
j=l 

Let m be the dimension of the space of _z(t) (i.e., the number of measure- 

meres). 

Let the residual vectors am be defined as 

5 (t) A = =(t+l) - C.&t+llt); i = 1, 2, . . . . N (C. 27) 

Then m 1 -- 
p(=(t+l) I Hi, u_(t), Z(t)) = (2rr)-'(det s(t+l)) 2 l 

-1 rl,(t+l)<l(t+l)~(t+ll 
l e2-’ (C. 28) 

Define .6. as 
1 m -- 1 -- 

. Bi(t+l) = (2~0 2 det(gi(t+l)) 2 (C. 29) 

It was mentioned previously that B:(t) is precomputable for all 
. 7 
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1= 1 ,...N, and all t. With this notation, equation (C.26) becomes 

Bi (t+ll e 
-$ ~~(t+l)$(t+l)~(t+l) 

Pi(t+l) = 
-L r!.(t+l)S 

2 B (t+l)Pj(t)e 2 -I 
-;l(t+l)rj(t+l) 

pi(t) 

j=l j 
(C.30) 

In the special case of statistically stationary noises, that is, 

g(t) = g, O(t) = 0 constant for all t, time invariant Kalman filters 

can be designed which are the steady state limits of the Kalman filters 

discussed previously. These limits exist under appropriate observability 

assumptions. Define 

c = 
-i lim C&j = ($ + 2; ~-lCJ1 (C.31) 

ki = lti z.(t+1lt) = z&z& + ; (C.32) 
F-c= 

* 

Then, si can be defined accordingly as in equation (C.241, by 

Zi = y+c; + 0 - - (C.33) 

Bi = tmr) (C.34) 

For this special case, the evolution of the probabilities is given by 

6, e 
-~(~~(t+l)~;lr+(t+l) 

Pi(t+l) = = 

5 8.e2 -j 
-3. (r'(t+l)q'%(t+l)) 

Pi(t) 

j=l ' 
P (t) 

j 

(C.35) 
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APPENDIX D 

Linearized Acceleration Equations 

The equations for normal and lateral acceleration in terms of the 

state variables used in the models of Chapter 3, are given in Etkin [361; 

the acceleration at the center of gravity of the airplane are given by 

N =-;(q-, 
z - PB) - cosecos~ (D. 1) 

N =x(b+r-pcr) - 
Y g 

cos0sin@ (D-2) 

For the purposes of designing the Kalman filters the pseudomeasurements 

; and; nz Y 
were defined, where. 

2 nz = NZ + cosecos~ (D.3) 

"a 
Y 

= NY + cosesin$-$ (D.4) 

For the purposes of developing a linear equation for anz and a Y 
, 

the longitudinal and lateral systems are assumed to be independent; 

thus lateral variables in (D.3) and longitudinal variables in (D.4) are 

set to thei.; trim values. Hence, 

vO a =-- 
nz g (q - & 

v. - 
aY 

= 4- (B + r - pcr,)-(# 

(D.5) 

(~.6) 

. . 
where o! and 6 are the linearized expressions given in Appendix A, and co 

is the value of the trim angle of attack. The coefficients of equations 

(D.5) and (D.6) are tabulated in this appendix for each flight condition. 



Flight 
Condition 

5 
6 
7 
8 

10 
11' 
12. 
13 
14 
15, 
16 
17, 
18 
19 
20 

q 

0.0 0.006 8.352 0.0 1.199 0.0 0.0 
0.0 0.004 26.680 0.0 3.496 0.0 0.0 
0.3 0.003 48.730 0.0 5.656 0.0 0.0 
0.0 c.002 79.7lC 0.0 7.730 0.0 0.0 
0. c O.GO5 5.928 0.0 0.993 0.0 0.0 
0.0 0.004 16.150 0.0 2.154 0.0 0.0 
0.0 G.CO3 31.280 0.0 3.592 0.0 0.0 
0.c c.cc2 42.2CO 0.0 4.401 0.0 0.0 
0.0 -0.001 61.370 0.0 6.363 0.0 0.0 
0.0 G.004 9.329 0.0 1.229 0.0 0.0 
0.0 o.co3 12.89C 0.0 1.580 0.0 0.0 
0.0 0.002 17.680 0.0 1.973 0.0 0.0 
0.0 0.0 28.001: 0.0 3.129 0.0 0.0 
0.0 o.coo 32.710 0.0 3.625 0.0 0.0 
0.0 c.oco 36.830 0.0 4.076 0.0 0.0 

Linearized Normal Acceleration Equations 

V a 0 6 e 6 
ec 

W 



Flight 
Condition 

5 
6 
7 
,a 

10 
11 
12 
13 
1L; 
15 
16 
1-i 
18 
15 
i(r 

P 

G.OciQ 
c. 001 

-C.CCl 
-0.oc3 
-L.OC6 

O.OCl 
-G.OCO 
-0. oco 
-0. OC? 
-0.oc4 
-G .iJcz 
-0.001 
-0. OCC 
-O.OCO 
-0.001 

Linearized Lateral Acceleration Equations 

r 

0.118 
C.CC4 
O.G53 
C.CE2 
C;.?bO 
0 .OlU 
C.05C 
0.049 
C.CF7 
OA7 
0.116 
o.oat': 
0.063 
O.G66 
c.050 

B 

-2.240 -0.010 0.G 0.020 0.493 
-7.300 -0.002 0.0 0.126 1.300 

-73.400 -0.001 c-0 0.277 1.840 
-21 .OOG -0.001 0.0 0.472 1.980 

-7.99C -0.013 0.0 0.015 0.413 7 
-4.460 -0.003 0.0 0.071 0.882 w 

-a. 290 -0.001 0.0 0.174 1.320 
-10.6OC -0.001 0.0 0.234 1.380 
-1c.7oc -0.001 0.0 0.230 0.686 

-2.600 -0.ooa 0.c 0.036 0.528 
-3.GZC -0.005 0.0 0.089 0.755 
-4.320 -0.003 0.0 0.086 0.552 
-7.580 -0.002 0.0 0.061 0.669 
-9.370 -0.002 0.0 0.101 0.537 

-11.6OC' -il.001 0.0 0.105 0.527 

4J W 6 a 6- 
r 
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APPENDIX E 

Linearized Discrete-Time Models for the F-8C Aircraft 

The basic equations for converting the continuous-time models of 

Appendix A to discrete-time sampled-data models are described in 

Appendix F. For the longitudinal system, the complete deterministic 

continuous-time model is of the form 

. d 
X=z 

q 
V 

o! 

8 

6 
e 

6 
ec 

W 

=A+ 
0 

+B. 6 -3 ec (E.1) 

where the matrices A. ; B+ were described in.Chapter 3 and Appendix A. 
. 

To convert to a sampled-data system, 6ec was assumed to be piecewise 

constant at l/8 of a second. The resulting sampled-data system is 

described as 

&t+11 = 

q 

V 

a 

8 

6 
e 

6 
ec 

W 

(t+1) L dd (t) + &j iec (t) (E.2) 



(E.3) ,. 

., .’ _. . 5., 

I ‘. 

. . 

where A., B. are described in Chapter 3 and Appendix A. The continuous 
-1 1 

time lateral system can be divided into two subsystems as explained in 

Chapter 7, '&f'-tie f&-m:: ':'.;:e ,-:'.-: ;.,..;‘;;. ,. .t 2"-;: , 

, 

-2 d 
X =- - dt 

< 
: I .- 

P 
r 

B 

@  
.tj 

6 r 

6 ac 

d rc 

= A'x + ?3' -i-l i (E.4) 

;i . ac I, I i rc 

’ ,. I ‘. 
‘: 

.  .  - 

(E.5) 
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Discretizing each of these systek at 1/8'of a second with the procedure 

described in Chapter 5 yields an overall system of the form: 

P 
r 
B 

4W 

6 a 
6 

r 

6 ac 
6 

rc 

(t+lI = 

(5X51 1 2x5 i 

12 
i %I- 

O 1 4x4 

E33(t) + 

A sinple permutation of the states results in the system 

x(t+l) = 

P 
r 
B 

4 
6 a 
6 r 
6 ac 
ts rc 
W 

= Ai -d x(t) + Bi -a 
i I 1 ac (t1 
im 

0 

5x2 

mm.- 

% 
ii 

\ 
II / 

(E.6) 

ii ac 
8 rc 

(E.7) 

The wtrices in equations (E. 2) and (E. 7) are displayed in this appendix. 

- 



FLIGH'I CdNDITION 6 

DYNAMIC PRESSURE 416PSF (1999C N/SQ.M) ClACH 0.53 ALTITUDE 0 PT( 

AD-MATRIX 
0.8589 

-0.3026 
0.1068 
0.1170 
0.0 
0.0 
0.0 

LONGITUDINAL SYSTEM 

-0.0000 -0.7578 0.0001 -0.8416 -0.8164 
0.9974 -0.9066 -4.0200 0.0733 -0.0029 

-0. ocoo 0.7869 0.0001 -0.0746 -0.C473 
-0.0000 -0.050 1 l.OOOC -0.068@ -0.0384 

0.0 0.0 0.0 0.2231 0.?769 
0.0 0.0 0.0 0.0 1 .oooo 
0.0 (2.0 0.0 0.0 0.0 

TRANSPOSE OF BD-MATRIX 
-0.0384 -0.0012 -c.o017 -c.o013 0.0603 

LATERAL SYSTEM 
AD-MATRIX 

0.4720 0.3690 -5.2509 -0.0204 2.9009 
-0.0146 0.8960 0.6220 0.0021 0.1673 

0.0059 -0.1150 0.8940 0.0065 0.0007 
0.0885 o.c229 -0.373c 0.9990 '3.2030 
0.0 0.0 0.0 0.0 0.0235 
0.0 0.0 e.0 0.0 0.c 
0.0 0.G 0.0 0.9 0.9 
0.9 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 

TRANSPCSE @F BD-MATRIX 
0.0 0.0 0.0 0.0 0.0925 
0.0 0.0 0.0 0.0 0.0 

-0.5241 
-0.6215 
-0.1530 
-0.0395 

0.0 
0.0 
0.4773 

0.1250 0.0 

0.871C 0.3 0.0 
-0.6260 0.0 0.0 

o.cl510 0.0 0.0 
0.0630 0.0 0. 0 
0.0 0.9760 G.0 
O.G439 9.0 0.9560 
G.@ 1 .oooo 9.0 
0.c 0.0 l.OO!IO 
0.0 0.0 0.G 

0.0 
O.GS68 

0.1250 O.@ 
0.0 0.1250 

-3.5100 m 
0.4400 A 

-0.0799 
-0.2910 

0.0 
0.0 
0.0 
0.0 
0.4773 

0.0 
0.0 



FLIGHT CGNDITICN 5 

DYNARIC FRFSSURE 133PSF ( 639 1 N/SQ.M) MACH 0.30 ALTITUDE 

LCNGITUDINAL SYSTEM 
AD-MATRIX 

0.9279 -c. coo0 -c.2329 0.0001 -0.3115 
-0.3894 0.9965 -2.2780 -4.0189 -0.0962 

0.1148 -0.0001 0.8901 0.0001 -0.0306 
0.1208 -0.0000 -C.GlSC l.OOGO -C.O247 
0.0 0.0 c.0 0.c 0.2231 
0.0 0.0 c.0 C.C. 0.0 
0.0 0.0 c.c 0.0 0.0 

TRANSPOSE OF BD-MATRIX 
-0.0138 -0.0063 -C.OCCB -0. COGS 0.0603 

LA'IERAL SYSTFM 
AD-MATRIX 

0.6090 G.199'c -2.51cr -0.0163 l.lSCO 
-0.0143 0.9540 G.154C 0. ooc9 c.0509 

0.0153 -0.1780 0.9400 G.Gl16 0.9079 
0.0991 0.0266 -0.77OC 0.9940 0.0787 
0.0 0.0 0.0 0.0 0.0235 
0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0. 
0.0 0.0. 0.0 0.0 0.G 

ThANSFOSE OF SD-MATRIX 
0.0 0.0 0.0 c.0 C.0325 
0.0 0.0 C.G 0.0 0.0 

-0.2959 -0.1891 
-0.1248 -1.8520 
-0.0201 -0.0903 
-0.3738 -c.o731 

0.7769 0.0 
1.0000 0.0 
0.0 0.6580 

c.7250 

0.3969 0.0 ".O -2.ClOC ? 
-r..226C 0.0 0.0 0.1270 IJI 

0.0236 0.0 'c. 0 -0.0508 
0.0256 0.0 0.0 -0.7470 
0.0 0.9760 0.0 0.c 
0.0439 0.0 G.9560 c.c 
cl.9 l.OGOG r. 0 ?.G 
0.0 0.0 l .O@OO 0.G 
0 l c 0 . 0 2.0 0.6569 

0.9 C.1250 c.0 0.G 
0.0868 0.0 0.1250 0.0 

0.0 

0 PT( 0 a) 



FLIGHT CONDITION 7 

DYNAtlIC PRESSURE 726PSF (34886 N/SQ.M) I3ACH 0.70 ALTITUDE 0 FT( 0 n) 

LGNGITUDINAL SYSTEM 
AC-MATRIX 

0.8009 -0.0000 -1.2870 0. coca -1.3340 
-0.3058 0.9970 -0.9524 -4.0190 0.2919 

0.1003 -0.0000 0.698C c. 0000 -0.1130 
0.1140 -0.0000 -0.0872 l.r)OOO -0.1098 
0.0 0.0 0.0 0.G 0.2231 
0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 

TRANSFOSE OF BD-MATRIX 
-0.0624 0.0053 -0.0026 -0.0021 0.0603 

LATERAL SYSTEH 
AD-HATRIX 

0.3710 0.5050 -7.0300 -0.0218 3.9100 
-0.0141 0.8180 1.51oc 0.0040 0.2389 

0.0039 -0.1100 0.8200 0.0048 -0.0048 
0.0800 0.0269 -0.5270 0.9990 0.2833 
0.0 0.0 0.0 0.0 0.0235 
0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 .@.O 0.0 
0.0 0.0 0.0 0.0 0.0 

TRANSPOSE OF BD-MATRIX 
0.0 0.0 c7.0 0.0 0.0925 
0.0 0.0 0.0 0.0 0.0 

-1.3180 -0.7886 
0.1543 -0.5694 

-0.G712 -0.1970 
-0.0624 -C,O638 

0.7769 0.0 
1 .oooo 0.0 
G.0 0.3765 

C.1250 0.0 

, 

l.COOC 0.0 0.0 
-0.8920 0.0 0.0 

0.0679 0.0 0.0 
0.0788 0.0 f3.0 
0.0 0.9760 0.0 
0.0439 0.0 0.9560 
0.0 1.0030 0.0 
0.0 0.0 1.0000 
0.0 0.0 0.0 

0.0 0.1250 0.0 
0.0868 0.0 0.1250 

-4.0500 
0.9540 

-0.1250 
-0.3790 

0.0 
0.0 
0. o- 
0.0 
0.3765 



FLIGHT CONDITION 8 

DYNAHIC PRESSURE 1098PSP (52762 N/SC.fl) MACH 0.86 ALTITUDE 0 FT( 

LGNGISUDINAL SYSTEM 
AD-!lATRIX 

0.7336 
-0.3228 

0.0931 
0.1105 
0.0 
0.0 
0.0 

-0.0000 -1.9510 0.0001 -1.7990 -1.8180 -1.0590 
0.9969 -1.1950 -4.0190 0.4425 0.2371 -0.6222 

-0.0000 0.5946 0.0000 -0.1475 -0.9933 -0.2420 
-0.0000 G.1361 1.0000 -0.1515 -0.3868 -0.0929 

0.0 0.0 0.0 0.2231 0.7769 0.0 
0.0 0.0 0.0 0.0 1.0000 0.0 
0.0 0.0 0.0 0.0 0.0 0.3012 

TBANSPOSE OF ED-MATRIX 
-0.0868 0.0082 -0.OC34 -0.0029 0.0603 

LATERAL SYSTEM 
AD-MATRIX 

0.2750 0.6370 -8.3800 -0.0227 3,880O 
-0.0138 0.7110 2.6400 0.0063 0.2330 

0.0032 -0.1040 0.7160 O.CO37 -0.0061 
0.0712 0.0328 -C.6730 0.9990 0.2900 
0.0 0.0 0.0 G.0 0.0235 
0.0 0.0 0.0 0.0 9.0 
0.0 0.0 0.0 9.c 0.0 
0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 9.0 

TRANSPOSE OF BD-HATRIX 
0.0 0.0 0.0 C.C 9.0925 
0.0 0.0 0.0 0.9 0.G 

0.1250 0.0 

9.9070 G-0 9.0 -4.95OQ y 
-c.9520 C.9 9.0 1.6030 21 

o.c709 0.0 9.0 -0.1860 
O.C79R 0.3 0-c -0.4480 
0.0 0.9760 0.0 0.0 
0.0439 0.0 9. 9560 C.0 
9.0 1 .OOOG 0.9 9.9 
0.0 0.0 l.CCOO 0.0 
0 .O 0.0 c. 0 0.3012 

0.3 0.1250 9.3 ‘3.0 
0.0868 0.0 0.1250 0.9 

0 M) 



PLIGHT CONDITION 10 

DYNAMIC PRESSURE 109PSF ( 5237 N/SQ.H) MACH 0.40 ALTITUDE 20000 FT( 6095 R) 

AD-HATEIX 
0.9470 

-0.4271 
0.1179 
0.1220 
0.0 
0.0 
0.0 

LONGITUDINAL SYSTEK 

0.0000 -0.2276 -0.0000 -0.2540 -0.2400 -0.2169 
0.9968 -2.8540 -4.0190 -0.0692 -0.3953 -2.7950 

-0.0000 0.9212 0.0001 -0.0243 -0.0155 -0.0772 
0.0000 -0.0141 1.0000 -0.0200 -0.0112 -0.0139 
0.0 O.@ 0.0 0.2231 0.7769 0.0 
0.0 0.0 0.0 0.0 l.OOOO 0.0 
0.0 0.0 0.0 0.0 0.0 0.9594 

TRANSPOSE OF BD-PIATBIX 
-0.0112 -0.0049 -C.O006 -0.0004 0.0603 

LATERAL SYSTEH 
AD-MATRIX 

0.7230 0.17lc1 -2.2100 -0.0112 
-0.0096 0.9680 0.1190 0.0006 

0.0183 -0.1190 0.9500 0.0094 
O.lC70 0.028' -0.1450 1.0000 
0.0 0.0 0.c 0.0 
0.0 0.0 0.0 0.3 
0.0 0.0 0.0 0.0 
0.0 0.0 
0.0 0.0 ko" 

0.0 
0.0 

TRANSPOSE OF BD-MATRIX 
0.0 0.0 0.0 0.0 
0.0 0.0 @.O 0.0 

. .’ ‘: 

0.9860 0.3750 0.0 0.0 
0.0443 -0.1920 0.0 0.D 

-2.1600 M 

0.0079 0.0199 0.0 0.0 
C.1160 & 

-0.0492 
0.0653 0.0232 0.0 0.3 -0.1430 
0.0235 0.0 0.9760 0.0 0.0 
0.0 0.0439 0.0 0.9560 0.0 
0.0 0.0 1 .O@OO 0.0 0.0 
0.0 0.0 0.0 1.0000 0.0 
0.0 0.0 0.0 0.0 0.9594 

0.0925 
'0.0 

0.0 
0.0868 

,: 

0.1250 
'0.0 

_ ~ 

3. 0. 0.0 
0..1250 0.0 

0.1250 0.0 



FLIGHT CONDITION 11 

DYNAHIC PRESSURE 254PSF (12205 N/SC.tl) RACA 9.60 ALTITUDE 20000 FT( 6095 H) 

LD-MATRIX 
0.9064 

-0.3468 
0.1137 
0.1198 
0.0 
0.0 
0.0 

LONGITUDINAL SYSTEM 

0. OCLIO -0.5443 -0.0000 -0.5334 -0.5100 -0.5271 
0.9982 -1.5780 -4.0210 0.0274 -0.0252 -1.5280 

-0.0000 0.8668 0.0000 -6.0476 -0.0297 -0.1294 
O.OO@O -0.0352 1.0000 -0.0425 -0.0239 -0.0345 
0.0 c.0 0.0 0.2231 0.7769 0.0 
0.0 0.0 0.0 0.0 1.0000 0.0 
0.0 c-0 0.0 0.0 0.0 0.9397 

TRANSPOSE OF BD-BATRIX 
-0.0239 -0.0020 -0.0011 -0.0008 C.0603 

LATERAL SYSTE!'l 
AD-MATRIX 

0.6370 0.3020 -4.42CIG -0.?154 2.1000 
-0.0110 0.9UlO C.345C 0.0011 c.124'3 

0.0088 -0.1180 0.9270 0.0@63 0.0035 
0.1010 0.0228 -C.2980 0.999c c.1410 
0.0 0.0 C.0 0.0 C.0235 
0.0 0.0 c.0 0.0 0.0 

20" 0.0 0.0 0.0 c.0 0.0 c.0 0.0 0.0 
0.0 0.0 0.0 0.0 3.0 

TRANSPCSE CF BD-MATRIX 
0.0. 0.0 0.0 0. :: 0.0925 
0.0 0.0 0.0 0.C ?.O 

0.1250 0.0 

0.7760 0.0 0.0 
-0.4260 0.0 0.0 

O.C363 0.0 0.0 
0.11520 0.0 0.0 
0.0 0.9760 3.0 
0.0439 0 .o. O.G560 
0.0 l.OC00 '3.0 
0.0 0.0 1.0000 
0.G G ..o 0.0 

%68 
0.1250 0.0 0.0 
C.0 O-125@ 0.0 

-U.2700 M 
0.3350 & 

-0.0712 
-0.2910 

CI. 0 
0.0 
0.0 
(2.0 
0.9397 



F 

FLIGHT CONDITION 12 

DYNAHIC.PRESSClRE 434PSF (20854 N/SQ.M) MACH 0.80 ALTITUDE 20000 FT( 6095 II) 

LCNGITUDINAL SYSTEM 
AD-IYATRIX 

0.8571 
-0.3425 

0.1086 
0.1172 
0.0 
0.0 
0.0 

O.OGOl -0.9781 -0.0001 -9.9337 -0.9G59 -0.9366 
0.9983 -1.5090 -4.0220 0.1437 O.C448 -1.4440 

-0.0000 0.7981 c. 0000 -0.0796 -0.0489 -o-.1944 
0.0000 -0.0644 l.OOO@ -0.0755 -0.0426 -0.0626 
0.0 0.0 0.0 0.2231 0.7769 0.0 
0.0 0.0 0.0 0.0 l.OciOO 0.0 
0.0 C.0 0.0 0.0 0.0 0.3204 

TRANSPGSE OF BD-MATRIX 
-0.0426 0.0007 -0.0018 -0.0014 0.0603 

LATERAL SYSTEM 
AD-MATRIX 

0.5380 
-0.0108 

o.oc53 
0.0937 
0.0 
0.0 
0.0 
0.0 
0.0 

0.4060 -5.9100 
0.8760 1.1400 

-0.1150 0.8700 
0.0234 -0.4130 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 010 
0.0 0.0 

TRANSPGSE OF BD-MATRIX 
0.0 0.0 0.0 
0.0 0.0 0.0 

-C.O161 
0.0028 
0.0046 
0.9990 
0.0 

i:: 
0.0 
0.0 

0.0 
0.0 

3.1100 1.0600 0.0 0.3 
0.1940 -0.6640 0.3 0.0 

-0.0019 0.0516 0.0 0.0 
0.2140 0.0752 0.0 0.0 
O-C235 0.0 0.9760 0.0 
0.0 0.0439 0.0 0.9560 
0.0 0.0 1.0~00 0. !I 
0.0 0.9 0.0 1.0000 
0.0 0.0 0.0 0.0 

0.0925 
0,o 

. 

' 

C-0 
0.0868 

0.1250 0.0 0.0 
0.0 0.1250 0.0 

0.1250 0.0 

-5.6400 
1.0900 

-0.1260 
-0.4010 

0.0 
0.0 
0.0 
0.0 
0.9204 

‘,_ : 



FLIGHT CONDITION 13 

DYNAHIC PRESSURE 550PSF (26429 N/SQ.M) MACH 0.90 AL-TITUDE 20000 FT( 6095 M) 

LONGITUDINAL SYSTEM I AD-MATRIX 
0.8198 -0.0001 -1.3380 

-0.3560 0.9983 -1.7160 
0.7051 -0.0000 0.7498 
0.7153 -0.0000 -0.0892 

I ,so.o 0.0 0.-o 0.0 0.0 0.0 
0.0 0.0 0.0 

TRANSPOSE OF BD-MATRIX 
-0.0517 O-.0006 -0.0021 

i AD-MATRIX 
0.4700 0.4690 -6;7SbO 

-0.0122 0.8510 1.39oc 
0.0045 -o..l140 0.8480 
0.0884 0.025s -0.4840 
0.0 0.0 q-0, 

TR,AtiSPOSE OF, BD-MATRIX 
"' 0 0 0.0 . -. 0.0 

0.0 0.0 O?O.' 
4 .’ I  

. , .  

0.0001 -1.1140 
y4.0210 0.1763 

0.0000 -0.0940 
l.OOCO -0.0912 
0.0 0.2231 
0.0 0.0 
0,o 0.0 

-0.0017 0.0603 

. :: 

LATFRAL SYSTEPI. 

-Oh68 
0.0031 
0 sO'O41 
0.9990 
0.0. 
0 :o 
0.0 

;;o" 

.g.o. 
0.0 

* 

I . .,a. . 

r 

. . 

3;2700 1.0400 
0.211c -0.7350 

-0.0038 0.0552 
0.2290 0.0765 

,.0.0235 0.0 
0 :o 0.0439 
0.0 0.0 
g.0 0.0 
0.0 . 0.0 

I 

0.092s 
0.c : > 

.I r, 

I :. ; ,' 

,c :o 
0.'0868 I. 

,'. 

-1.0940 -1.2730 
0.05.11 -1.6320 

-0.0578 -0.2398 
-c!;o517 -0.0864 

0.7763 0.0 
1 .ooo(! 0.0 
OF0 0.9109 

0.1259 

* 

0.0 

0.0 
0.0 
0.0 
0.0 
0.9760 
0.0 
'i .oooo 
0.0 

.o.o 

Oil250 
0 -0' 

0.0 
0.0 
0.0 
0.0 
0.0 
0.9560 
0.0 
1.0900 
0.0 

0.0 
0.1250 

> 

-6.4/)00 
1.3300 7 

-0.1460 E 
-0.4690 

0.0 
0.0 
CI. 0 
0.0 
0.9109 

0.0 
0.0 



FLIGHT CONDITION lU 

DYNAMLC PRESSURE 978PSF (46995 N/SQ.M) EACH 1.20 ALTITUDE 20000 FT( 6095 M) 

AD-MATRIX 
0.6618 

-0.3478 
0.0984 

..0.1092 
0.0 
0.0 
0.0 

LONGITUDINAL SYSTE! 

0.0001 -4.2360 -0.0001 -1.3280 -1.3820 -3.9560 
0.9997 -1.279G -4.0240 0.2216 0.0627 -1.1810 
0.0000 0.5463 -0.0000 -0.1163 -0.6722 -0.4309 
0.0000 -0.2929 l.OOOG . -0.1152 -0.0664 -0.2806 
0.0 0.0 : 0.0 0.2231 0.7769 0.0 
0.0 0.0 0.c 0.0 1 .oooo . 0.0 
0.0 0.0 0,o 0.0 0.0 .0.8830 

TRANSPOSE OF BD-MATRIX 
-0.0664 o.oco7 -@.0026 -0,0023 0.0603 

LATERAL SYSTEH 
AD-MATRIX 

, 0,$140 0.7450 -10.8000 -0.0202 
-0.00'43 0.7840 1.9400 0.0033 

0.0029 -0.1090 0.7970 0.0030 
0.0920 0.0362 -0.7780 0.9990 
0.0 0.0' 0.0, 0.0 

;g 0:o 0.0 o;o, ~ 
0.0 0.0 0.0 

0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0' 

TRANSPOSE OF BD-UATRIX 
0.0 0.0 0.0 0.0 
0.0 0.0 0.0. 0.0 ': 

I’ 

: . . . 

2.0500 
0.0825 

~0.0009 
0.1410 
0.0235 
0.0 
0.0 
0.0 
0.0 

0.0925 
0.0 

0.125C 0.0 

0.9200 
-0.3770 

0.0279 
0.0675 
0.0 
0.0439 

0":: 
0:q s 

0,o 
0.0868 

0.0 0.0 
0.0 0 :o 
0.0 c. 0 
0.0 0.0 
0.9760 0.0 
0.0 0.9560 
1 .oooo 0.0 
0.0 1.or)oc 
0.c 0.0 

0.1250 
0.0 

.a 

0.0 
0.1250 

-10.1000 
1.8200 y 

-0.1940 : 
-0.7450 

0.0 
0.0 
(3.0 
cI.0 
0.8830 

0.0 
0.0 

I 



. . 

FLIGHT CGNDITICN 15 

DYNBHIC PRESSURE 135PSP ( 6487 N/SQ.M) MACH 0.70 ALTITUDE 40000 PT( 72191 f5) 

LONGITUDINAL SYSTZM 
ED-MATRIX 

0.9450 
-0.4229 

0.1186 
0.1220 
0.0 
0.0 
0.0 

0.0001 -0.3433 
0.9989 -2.7690 

-0.0000 0.9247 
O.@OOO -c.o219 

0.0 0.0 E 
0.0 0.0 

-0.0002 -0.3385 -@.3200 -0.3317 
-4.0230. -0.0056 -0.0439 -2.6760 

0.0000 -0.0298 -0.G181 -0.0731 
1. GO00 -0.0267 -0.0149 -0.0214 
0.0 0.2231 0.7769 0.0 
0.0 0.0 1;OGOO 0.0 
0.0 (2.0 .O.G 0.9345 

-0.0005 0.0603 0.1250 0.0 

LATERAL SYs'J!EM . . 
-0.0092 

0.0007. 
0. 0'058 
l.OO@O 

' 0.0 
0;o 
0.0 
0.0 
0.0 

1.3500 
c.0739 
0.0064 
0.0884 
0.0235 
0.0 

r 

' 0.5260 0.0' 
0.0 
0.0 
0.0 
0.9760 
0.0 
1.0000 

Ki 

0.0 
-0.2560 

0.0233 
0.0329 
0.0 
'0.0439 
0.0 
0.0 
0.0, 

C. G 
0.0 
0.c 
0.0 
0. 9560 
0.0 
1.0000 
0.0 

-2.8900 IA 
0.2280 i 

-@.0526 
-0.1890 

0.0 
0.0 
0.0 
0.0 
0.9345 

0.0 C.0925 
0.0 0.0 

0.0 
~~..~868 

0.1250 0.0 0.0 
'0.0 0.1250 0.0 

.’ ,*, . 

TRANSPOSE OF BD-kATRIX ' 
-0.0149 -0.0026 -0.0007 

AD-MATRIX 
0.7880 

-0.0058 
0.0143' 

- 0.1120 
o.,o 
0,'o. 
0.0 
0.. 0 
0.0 

-2.95OG 0.2090 
0.9660 

-0.1200 
0.0245 
0.0 

. 0.0 
0.0 

0":: . 

0.2350 
0.9460 

-0.1940 
0.0 
0.0 
0.0 
0.0 
0.0 

TRANSPOSE OF BD-MATRIX 
0.0; 0.0 0.0 
0.0 0.0 0.9 

. . - 



FLIGHT CONDITION 16 

DYNAMIC PRESSURE 176FSF ( 8457 N/SQ.M) MACH c.80 ALTITUDE 40000 FT( 121ql 14) a 

LONGITUDINAL SYSTEM 
AD-BATRIX 

0.9300 0.0001 -0.469C 
-0.3886 0.9987 -2.2220 

0.1172' -0. ocoo 0.9059 
O.‘i212~ 0.0000 -0.03oc 
0.0 0 :o 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 

TRANSPOSE OF BD-MATRIX 
-0.0202 -ci,oo21 -0.0008 -0.0007 0.0603 0.1250 0.0 

LBTEBAL SYSTEM 
AD-MATRIX 

0.7620 
-0.0058 

0.0109 
0.1100 
0.0 
0.0 
0.0 
0'. 0 
0.0 

0.2540 -3.7500 -0.0102 1.7300 0.6550 
0.9510 c.417c G.@Olq O.lClO -0.3310 

-0.1200 0.9330 0.0050 0.0046 0.0282 
,O.C,226 -0.2450 l.OOO@ 0.1130 0.0419 
0.0 c.. c (2.0 0.0235 0.0 
0.0 0.0 0.0 C.@ 0.3439 

.o.o 0.0 0-c 0.0 O.? 
0.0 c*. 0 0.0 2.0 0.C 
0.c 0.0 0.0 0.0 0.0 

0":: 
0.0 
0.0 
Q.9763 
0.0 
l.OCOG 
0.0 
0.0 

TRANSPGSE OF BD-?IATBIX 
3.0 0.0 G.0 
c.. 0 '0.0 0 .,o 

‘ 

-0.,0002 -0.4568 -0.4336 -0.4509 
-4.022G 0.0188 -0.0301 -2.1360 

0.0000 -0.0393 ~0.0237 -0.0909 
1.0000 -0.0361 -0.0202 -0.0292 
0.0 0.2231 0.7769 0.0 
0.0 0.0 1.0000 0.0 
0.0 0.0 0.0 0.9255 

0.0 0.0925 0.0 0.1251) 3.0 0.6 
0. 0 0.0 0.0868 0.9 0.1250 0.0 

. 
. . 

\ 

0.0 -3.6OC'O 
3. 0 0.4010 
C.0 -0.0649 
0.0 -0.23t30 
2.0 0.0 
9.9560 0.0 
0.0 0.0 
1, !?ooc 0.0 
0.0 0.9255 



FLIGHT CONDITTON 17 

DYNAHIC PRESSURE 223PSF (10715 N/SQ.M) MACH 0.90 ALTITUDE a0900 FT( 12191 M) 

I 
1 AD-NATRIX 

0.9083 
-0.4190 

0.1153 
0.1201 

.; 0.0 
1 0.0 

0.0 

TRANSPOSE' 
-0.0254 

AD,-MATRIX 
0.6970 

-0.0076 
0.0986 
0.1050 
0.0 . 

'0.0 
0.0, 
o..o 
0.0. 

-0.0001 -0.6750 
0.9986 -2.7060 

-0.0000 0.8793 
-0. OOGO -0.0435 

0.0 0.0 
0.0 0.0 
0.0 0.0, 

OF BD-MATRIX 
-0.0015 -0.0010 

0.2970 -4.4700 
0.9340 0.6170 

-0.1190 0.9190 
0.0219 -0.2960 
0.0 0.6 
0.0 ,- 0.0 
0.0 0.0 
0.0 o.,o 
0.0 O;Q 

TRANSPOSEvOF BD-MATRIX .I .’ ,: 

0.0. 0.0 opo 0.0 ’ 0.0925 
0.0 0.0' . 0.0 oio’ c-0 

LONGITUDINAL SYSTEM 

0.0002 -0.5689 
-4.0220 0.0571 

@.'000G -C.O'484 
1.0000 -0.0453 
0.0 0.2231 
0.0 0.0 
o.,o 0.0 

-0.0009 0.0603 

3 

LATERAL SYSTEM 

-0.0110 2.'06GO 
0.0014 C.1250 
0.0045 0.0026 
1.0000 0.1370 
0.0 0.0235 

ii:; 0.0 0.0 
0.0 0.0 
0;o 0.0' 

-0.1161 
-0.0422 

0.0 
0.0 
0.9166 

0.1250 

-0.5434 -0.6456 
-0.0115 - -2.5870 
-O.-O291 
-0.0254 

0.7769 
1.0000 
0,o 

0.0 

0.721'3 
-0.3860 

0.0312 
0.0475 
0.0 
0.0439 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.9760 
0.0 
1.0000 
0.0 
0.0 

0;o " 
0.0868 

i 8% 

0.1250 
0.Q. 

'.. 

" 

C.9 0.2 
0.1250 0. 0 

.  ,  _’ :  

0.0 
0.0 
9.0 
0. 0 
0.0 
0.9560 
0.0 
1.000c 
cI.0 

-4.2600 
0.5910 '? 

-9.0780 . g 
-r;.2880 

0.0 
0.0 
0.0 
0.9 
0.9166 



FLIGH? CONDITION 78 

DYNAMIC PRESSURE 357PSF (19077 N,'SQ.M) MACH 1.20 ALTITUDE 40000 FT( 12191 fl) 

LONGITUDINAL SYSTEM 
AC-MATRIX 

0.8098 0.0000 -2.3981: -G. 0000 -0.7820 
-0.4091 0.9998 -2.3738 -4.O2SO 0.2309 

0.1105 @. 0000 c.7549 -0. OCOO -0.0673 
0.1162 O.OGOO -0.1577 1. @O@O -0.0643 
0.0 0.c 0.0 0.0 0.2231 

0.0 ct. c 0.3 c.0 
G.0 0.0 0.0 0.0 

TRANSPOSE CF BD-MATRIX 
-0.0364 0.0043 -0.OOlU -0.G012 0.0603 

LATERAL SYSTEM 
AD-MATRIX 

; 0.6940 c.444c 
: -0.0058 0. Be90 
: . 0.0058 -0.1170 
: 0.1050 0.0252 

0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 

-6.6800 -0.0125 1.5000 0.6170 
1.. 0 50 0 C.0018 0.0742 -O.?ElC 
0 a8860 0.3033 G.0005 0.0217 

-0.4b7C c.9590 0.0994 0.0417 
0.0 0.0 @.G235 0.0 
0.0 0.0 0.0 0.0439 
0.c 0.0 0.c 0.0 
0.0 0.0 0.0 c.0 
0.0 c.0 0.0 0.Q 

TRANSPOSE OF BD-MATRIX 
0.0 0.0 0.0 0.0 0.0925 
0.0 0.0 0.0 0.0 0.0 

-0.7716 -2.2570 
0.1241 -2.2280 

-0.0406 -0.2339 
-0.0364 -0.1516 

0.7769 0.0 
1 .oooc 0.0 
0.c 0.8903 

0.1250 

0.0 
0.0868 

0.0 

0.0 
0.0 
0.0 
0.0 
0.9760 
0.3 
1.0000 
0.0 
0.0 

0.1250 
0.0 

0.0 
0.0 
r.0 
0.0 
0.C 
0.9560 
0.0 
1.3000 
0.0 

-6.2700 M 
0.9860 i 

-0.1090 
-0.4300 

0.0 
0.9 
0.0 
0.0 
0.8903 

0.0 9.0 
0.1250 0.0 
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FL IG H 'I C O N D ITIO N  1 9  

D Y N A H IC P R E S S W E  5 3 7 P S F  ( 2 5 8 0 4  N /S Q .M ) M A C H  1 .4 0  A L T ITUDE 4 0 0 0 0  FT( .12191.M.)  

A D - M A T R IX  
L C N G I'IU D INAL  S Y S T E M  

0 .7835  0 .0000  -2 .7570  -0 .0000  -0 .8169  -0 .813C -2 .569@  
-0 .4555  0 .9996  -3 .0630  -4 .0240  0 .2813  0 .1541  -2 .8460  

0 .1094  -0. ooco  0 .731c  0. O O O G  -0 .0706  -0 .0425  -0 .2549  
0 .1150  o .ooco -0 .1823  1  .cooo -0 .0677  -0 .9385  -0 .1742  
0.0 0.0 0.0 0.0 0 .2231  0 .7769  0.0 
0.0 0.0 0.0 0.0 0.0 1 .0000  0.0 
0.0 0.0 0.0 0.0 0.0 0.0 0 .8733  

T R A N S P O S E .O F  B D - R A T R IX  
-0 .0385  0 .0055  -0 .0015  -0 .0013  0 .0603  

lA T E R A L  S Y S T E M  
A D - M A T R IX  

0 .6700  
-0 .0089  

0 .0057  
0 .1040  
0.0 
0.0 
0.0 
0.0 
0.0 

0 . 5 7 4 G  - 8 . 6 1 O O  -0 .0138  1 .3900  0 . 5 7 C G  0 .0  
0 . 8 9 U O  0 .9290  0 .0014  O .O 3 7 3  -0 .2870  3 .0  

-0 .1?60  G .8870  0 .0028  O .O C 2 2  @ .O 2 1 5  0 .0  
0 .0307  -C .5800  c. 9 9 9 0  0 .0922  0 .0393  0 .0  
0.0 c.0 0.0 0 .0235  0.0 0 .9 7 6 0  
0.0 0.0 0.0 0.0 0 .0439  !? .O  
0.0 0.0 0.0 0.0 0.0 1 .0000  
0.0 0.0 0.0 0.0 0.0 O .@  
0.0 0.0 0.0 0.0 0.0 0.0 

T R A N S P O S E  O F  B D - M A T R IX  
0 .0  0 .0  0 .0  0 .0  0 .0925  
0.0 0.0 0.0 0.0 0.0 

0 .1250  

0.0 
0 .0868  

0.0 

0 .1250  
0.0 

” 

0. 0  -R .G lOO 
3 .C 2 .8680  
0 . Q  -?l. lQ 8 0  
C .O  -0 .5540  
0 . 0  0.0 
0 .9 5 6 0  0.0 
0 .0  0.9 
? .O O O @  0.0 
0 .0  0 .3?33  

9.0 
0 .1250  

0 .9  
0 .0  



FLIGHT CONCITION 20 

DYNAhIC PRESSURE 703PSF (33781 N/SQ.M) MACH 1.60 ALTITUDE 400?0 FT( 12131 M) 

LONGITUDINAL SYSTEM 
AD-MATRIX 

0.7647 0.0000 -3.026C 
-0.5185 0.9993 -4.0090 

0.1086 -0.0000 0.7140 
0.1142 0.0000 -0.2008 
0.0 0.0 @.O 
0.0 0.0 0.9 
0.0 0.0 0.0 

TRANSPOSE OF BD-MATRIX 
-0.0422 O.OG68 -C.O016 

AD-MATRIX 
0.6600 0.6590 -9.9200 

-G.O080 0.849C C.8270 
0.0044 -0.1170 0.8955 
0.1030 0.0329 -0.6710 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 

TRANSPOSE OF BD-t!ATRIX 
0.c 0.0 0.0 
0.G 0.0 c.0 

-O.@OOO -0.8878 -0.8887 -2.79’30 
-4.0230 0.3508 0.1917 -3.6880 

o.ooco -0.0766 -0.0460 -0.2683 
1 .OOO@ -0.0741 -0.0422 -0.1905 
0.0 3.2231 0.7769 0.0 
0.0 9.0 1.0000 0.0 
0.0 0.0 0.0 0.8565 

-0.0014 0.06C3 

LATZ'IAL SYSTEM 

-0.0143 
0.0011 
0.0025 
0.9930 
C.9 
0.0 
0.0 
0.C 
G.0 

1.2800 0.5390 0.0 
0.0046 -0.2930 0.3 
0.OC30 0.0211 9.0 
0.0858 9.9379 0.3 
9.0235 0.0 0.9760 
0.0 0.0439 0.0 
C.9 0.0 1 .oooo 
3.0 c.0 0.0 
0.0 0.9 0.0 

0.0 0.0925 G.9 0.1250 9.3 0.3 
0.Q 3.9 C.Oi368 0.0 0.1250 0.9 

0.1250 0.3 

9.0 -9.1300 pj 
9.0 0.7660 C 
9.3 -0.0994 03 
3.0 -0.6370 
3.3 Cl.0 
0.9560 0.0 
0.9 0.0 
1.0300 0.0 
0.0 0.8565 
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APPENDIX F !, 0’ c OUTLINE OF COMPENSATOR DESIGN PROCEDURE 

F.l Problem Statement 

Consider a linear, time invariant stochastic system whose state equation 

is modeled as 

i(t) = A x(t) + B u(t) + L E(t) (F.1) -- -- -- 

where 2, g,. and 5 are elements of finite dimentional spaces, and L(t) is a 
‘i 
1 1. white noise, zero-mean, Gaussian random process with covariance defined by 

El<(t) E'(s)) = 2 6(t-s) (F.2) 

where E 2 is the intensity matrix and 6(t-s) is the Dirac delta function. 

Additionally, A, B and L are appropriately dimensioned time-invariant matrices. - 

Observations on the state vector x(t) are defined by linear equations, 

corrupted by white noise Gaussian processes according to the model 

g(t) = c x(t) + g(t) (F.3) -- 

where 

E@(t) 1 = 0 

E@(t)c'(s)) = 0 6(t-s) 

E@(t)h (s)} = 0 for all tr s 

(F.4) 

(F.51 

(~.6) 

where 0 is the noise intensity matrix. 

The initial state x(0) is assumed to be a Gaussian random variable, - 

with mean x 
-0 and covariance C -0' Associated with this problem is a quadratic 

cost functional of the form 

JT = 1i.m' E&(T)'2 x(T) + I T 

wT 
(5' (t)&(t) + 2' (t)$(t))dt) 

0 
W.7) 
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where S, $I2 0, E > 0 for all t. 

The cost functional JT represents the objectives of the design, and 

must be chosen in the design process. Thus, the matrices 2, Q and R must - 

be chosen to specify the design. Additional parameter choices are values 

of the covariance matrices z =. and 0, reflecting the confidence one has in 

the system observations (F-3) and the mathematical model (F.l). 

F.2 The Separation Theorem and Control Gain De.sign 

The optimal solution of the stochastic control problem described in 

F.l can be obtained as the combined solution of two problems: one of esti- 

mation and one of control. This is known as the separation theorem 151. The 

control problem solution is given by 

g(t) = -G Et(t) (F-8) -- 

where 8(t) is the minimum variance estimate of the state, give,n measurements - 

{z(t) 1 I and G is obtained from - 

G = --1B K (F.9) - -- 

where K is the unique positive definite symmetric solution matrix of the - 

algebraic Riccati equation 

g= -KA-AK- (F.lO) -- -- 

F.3 Discrete-time Formulation and Estimation 

Control algorithms for the F-8C aircraft will be implemented using a 

digital computer. Hence, the control action u(t) will change only at dis- 

crete intervals. Assume these intervals are equispaced 'c seconds apart. 

Then, an equivalent system description can be obtained, as in [33], of the form 
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x((n+l)T) = A+(n-c) + 12, ;(nr) + r)(M) 

where 

(F.ll) 

(F.12) 

(F-13) 

and n(nT) is a stationary discrete-time, - zero-mean white noise sequence with 

covariance N, where 

N= J L=L' -Altdt - -=- 
0 

(F.14) 

Assuming that the observations z(t) are available only at the sampling 

intervals T, the minimum variance estimate of the state x is obtained by a 

discrete Kalman filter [23], described by: 

g(t+l\t) = s &(tlt) + s u(t) (F.15) 

g(t+l It+11 = 1 x(t+llt) + H(z(t+l) - c x(t+llt)) (F.16) 

where the Kalman filter gain matrix E is obtained by 

% (F-17) 

c = Ll - LIC' (0 + c z1 C')C Ll (F.18) ' 

H=&'@ (F.19) - -- - 

F.4 Discrete-Time Control Gain Design -. 

The gains .obtained in Section C.2 used instantaneous feedback of the 

state vector x(t) to obtain a decision vector u(t). Since the estimate of 

the state is available only at discrete intervals nT, and the control action 

is constant during each interval, these gains should be discretized so that 
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g(nT) = s g(nTlnT) (F.20). 

The gains G+ are chosen to approximate closest the deterministic closed- 

loop response of the continuous-time system. The closed-loop continuous-time 

system is 

(A - x((n+l)T) = e - B G)T -- x(nT) 

The closed-loop response of the discrete-time system is 

x((n+l)-c) = (A, - 

The G+ which minimizes 11% 

ized inverses, 

(F.21) 

y+)~(m) (F.22) 

(A - -BG -e- 
-d-d 

B WI 1 is obtained using general- 

g= (B 4 %' (F.23) 
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APPENDIX G 

. 
. . . 

‘. ..,I * 

Continuous Time Control Gains :' . . 1:. .;;, 

Although the MMAC algorithm is a sampled-data algorithm, the control 

~gains were initially designed as continuous time gains using the LQG 

methodology described in Appendix F. Using the matrices of Appendix A, 
,,'. '. 

the deterministic longitudinal system is represented by 

. 
where u= 6 ecr 

Transposing the 

^x= q - I 
V 

a 

8 

6 e 

6 ec 

I W 

6 e 

6 ec 

(G.2) 

states 6 ec and w yields the state vector 

(G.3) 



- I 
G-2 

The longitudinal control variable aec is given by 

ii =u=-G 
-IOn ii* 

(G.4) 
ec - 

The matrices glen are tabulated in this appendix. 

The deterministic equations for the lateral system are given by 

where A,B are the lateral system matrices of Appendix A, and 

u= i x= P - ac ' - 

0. ” ii 
r 

rc !3 
; .,,? 

9 
6 a 

6 r 

W 

6 ac 

6 rc , 

Switching the order of the states yields the state vector 

< 
x= P - 

r 

f3 

4 

6 

csa 

c ac 
6 rc 

: w 

('3.5) 

(~.6) 

(G.7) 
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P 
r 

B 

+ 
6 a 

6. r 

6 ac 

6 rc 

W 

The control value g is derived in Chapter 9 to be of the form 

I 

where x&t) = pm 

r m 

'rn 

'm 

6 

(G. 8) 

(Gr9j 

& represents the model states. Similarly 

irc (tl = G$gt1 - g g(t) (GA 10) 

The matrices G$ Ga, G r -F-m and Gr ~ are tabulated for each flight condition; 



Continuous Feedback Gain, Elevator Xate 

Flight 
Condition q V a 0 6 e 6 ec W 

5 -4.118 -.0017 .274 .0024 1.712 6.411 2.014 
6 -4.827 -.003,1 -.600 .0099 5.36 11.34 5.25 
7 -5.543 -.00086 -2.037 .0068 9.587 15.168 8.763 
8 -6.33 -.00026 -3.3 .0032 14.67 18.76 13.84 

10 -4.485 -.00182 .767 -.0433 1.403 5.80 3.43 
11 -4.541 -.0015 .7089 .O103 3.19 8.75 7.14 
12 -5.146 -.0019 -.383 .0121 6.21 12.21 12.19 
13 -5.39 .000024 -.229 .0026 7.83 13.71 16.66 
14 -4.272 -.00032 18.96 -.000027 9.05 14.74 41.06 
15 -4.42 -.0025 1.28 -.234 1.95 6.84 4.55 
16 -4.57 -.0024 .997 -.0304 2.706 8.06 5.90 
17 -4.67 .00021 1.308 .0033 3.47 9.12 8.10 
18 -3.65 .000096 13.59 -. 7.14 4.35 10.22 21.84 
19 -3.575 -.00028 14.89 .00187 4.611 10.52 25.19 
20 -3.69 -.00024 15.88 .0017 5.192 11.16 27.22 
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Flight 
Condition 'rn 

r 
m 'rn 'm %m 

5 -1.9070 - .94700 2.88900 -9.2850 -12.650 -.62190 
6 -1.6830 -1.6820 4.26600 -9.1810 -7.5740 -.19190 
7 -1.5570 -3.7940 16.3100 -8.8650 -6.3890 -.98210 
8 -1.4940 -6.5150 39.3300 -8.4400 -6.6620 -1.7190 

10 -1.9410 -1.1120 3.05400 -9.2760 -13.710 -.50490 
11 -1.7710 -1.4300 2.18800 -9.2080 -9.1440 .20380 
12 -1.6500 -2.5930 6.51100 -9.0340 -7.2720 -06132 
13 -1.6150 -3.3530 11.4100 -8.9130 -7.0410 -.17550 
14 -1.7270 -5.0800 17.3000 -8.8380 -9 -0530 2.5650 
15 -1.8740 -1.2740 2.19600 -9.2200 -11.660 .14930 
16 -1.8160 -1.4710 1.96100 -9.1820 -10.220 .39940 
17 -1.7700 -1.6670 2.36300 -9.1520 -9.2310 .46860 
18 -1.8280 -2.5790 2.90100 -9.0670 -10.740 2.0440 
19 -1.8700 -.78300 -719800 -9.2760 -11.380 1.1460 
20 -1.8830 1.3280 -2.37600 -9.3710 -11.800 .04392 

Feedforward Control Gains, Aileron Rate 

Contipuous Time 



Feedback Control Gains, Aileron Rate 

Continuous Time 

Flight 
Condition P r B 6 a 6 r 6 ac 6 rc 

5 1.68200 3.48200 -12.8100 9.03200 .688100 .044570 6.41600 .448700 
6 1.18000 3.50600 -18.3700 9.06500 1.40800 -.044630 9.19100 .253400 
7 .868500 4.85800 -27.5200 8.84800 1.73700 -.451200 1.02100 -.198700 
8 .605700 6.80700 -41.1000 8.53300 1.69100 - .947200 10.0600 -.557200 

10 2.21200 4.09200 -13.8100 9.05600 .708000 .080690 6.50300 .588900 
11 1.70000 4.02900 -18.5300 9.07200 1.25800 .071160 8.67800 .510700 
12 1.32400 4.16100 -20.4400 9.00300 1.62100 - .039070 9.85900 .318300 
13 1.10900 4.87400 -24.9600 8.91300 1.61700 -.267400 9.85000 -01.0880 
14 1.28300 8.36200 -40.5800 8.87300 1.13200 -.293500 8.24100 -.128400 
15 2.47500 4.36600 -17.0600 9.09200 1.03700 .148200 7.86800 .771000 
16 2.27100 4.21500 -18.0600 9.09000 1.24000 .158900 8.60600 .758800 
17 1.94200 4.10400 -18.6500 9.98900 1.33400 .121000 8.93400 .648200 
18 1.97500 6.83700 -29.1900 9.10200 1.03600 - .052790 7.88200 .311300 
19 1.90600 7.55600 -39.0100 9.12800 .908100 -.124700 7.38000 .212300 
20 1.94300 7.54800 -45.2300 9.12600 .811700 -.121200 6.97500 .319700 

w 

-7.17900 
-8.16900 
-9.39800 
-10.8900 
-12.7900 
-16.5400 
-16.9400 
-20.0070 
-30.7100 cl -15.1400 & I 
-15.7600 
-15.9700 
-23.1700 
-31.9400 
-37.6600 



Flight 
Condition 

5 .062090 2.56500 4.21500 -.074120 3.12000 -5.11400 
6 -.156800 10.7800 -6.74100 -1.39400 -.344000 -5.25500 
7 -.352400 17.8000 -26.8000 -2.64200 -1.08200 -4.99300 
8 -.510600 24.8400 -51.6100 -3.73800 -1.25800 -6.67800 

10 .014270 2.01100 4.26000 -.268300 2.91200 -5.14900 
11 -.115600 6.51200 1.04700 -1.05800 .262900 -5.55600 
12 -.25750d 11.9400 -9.25500 -1.94500 -.856300 -5.75000 
13 -.327600 14.6000 -17.4600 -2.38600 -1.14000 -6.00700 
14 -.324100 24.3000 -40.3000 -2'.83600 -1.06900 -14.3300 
15 -.107900 3.10300 4.38700 -.867900 1.01600 -5.61500 
16 -.147200 4.59200 3.58200 -1.11800 .316900 -5.92100 
17 -.176700 6.10600 2.15200 -1.31200 -.188600 -6.40900 
18 -.220500 1.07500 -2.36100 -1.72700 -.5350,00 -11.3500 
19 -.028890 13.4900 -7.67700 - .982700 1.03700 -12.6800 
20 .117200 16.4300 -14.2600 -.441400 2.09200 -14.0400 

G-7 

Feedforward Control Gains, Rudder Rate 

Continuous Time 

‘rn 
r m 6 rm 



Flight 
Ccndition P r B 6 a 6 r 

6 ac 6 rc w 

5 .466000 -6.01500 .398600 .551800 .079640 .611600 .252800 5.52000 -4.86500 
6 .616800 -10.2300 3.63500 1.40200 .121500 2.85200 .142700 11.9400 -14.4400 
7 .675300 -12.5600 -1.04500 2.22900 .114600 5.01600 -.112000 15.8400 -28.5300 
8 .696800 -13.6700 -17.9000 2.88600 .156800 6.05800 -.314500 17.4000 -47.7700 

10 .577900 -6.28600 .536500 .639100 .091140 .537500 .331700 5.16500 -2.05000 
il .648900 -8.32100 1.06300 1.13100 .135800 1.60900 .287700 8.96200 -4.72000 
12 .640300 -9.49900 -5.54800 1.65500 .149600 2.92900 .179300 12.1000 -15.4400 
13 .676000 -10.8700 -4.84400 1.96300 .120800 3.54900 -.006127 13.3200 -17.4200 
14 .633700 -15.0300 -12.8300 1.91200 .091330 2.43300 -07.2320 11.0300 -34.5800 
15 .670700 -6.39500 -1.60800 .978000 .133400 .763400 .434400 6.15100 -5.25000 
16 .640000 -6.46900 -3.80100 1.10900 .149400 1.02000 .427400 7.11700 -8.35200 
17 .598200 -6.71100 -5.94100 1.19500 .147100 1.22700 .365100 7.81700 -11.5000 
18 .642500 -8.54200 -13.7400 1.33800 .114200 1.09900 .175400 7.40800 -22.9000 
19 .617200 -12.4700 -5.60300 .505800 .121800 1.43800 .119600 8.47700 -19.4900 
20 .499600 -17.4600 8.80500 -.131200 .156600 1.85600 .180100 9.62900 -11.8800 

Feedback Control Gains, Rudder.Rate 

Continuous Time 
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APPENDIXH 

Discrete Time Control Gains 

This appendix contains the discrete time control gains used in the 

pilot command designs of Chapters 5 and 6. For the longitudinal system, 

the commanded elevator rate is obtained from 

Set(t) = 2 ($SW - g(t) 1 (H-1) 

where g(t) is the minimum variance estimate of the state, r(t) 

x(t) = (H.2) 

and s is the pilot stick deflection, as discussed in Chapter 5. The 

gains G 
7? 

are tabulated in Chapter 5. The elements of the matrix g are 

listed in this,appendix for each flight condition. 

In the lateral system, there are two control variables. As dis- 

cussed in Chapter 6, the commanded aileron rate can be computed as 

:ac(tl = g; x&t) - GJ g(t) (H.3) 
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H-2  

w h e r e  G  -i a r e  fe e d fo r w a r d  ga ins  f rom th e  pi lot  m o d e l a n d  $  a r e  feedback  

ga ins  f rom th e  es t imated sta tes  c(t), w h e r e  

x(t) =  

P  

r 

6  a  

6  r 

6  ac  

6  rc 

W  

(H.4) 

S imilarly, the c o m m a n d e d  rudder  rate is g iven  by  

. 
l&(t) =  5  x;,(t) - g  g(t) (x3.5) 

T h e  ga ins  g, sa, < , +  G "  are  tabu la ted for e a c h  flig h t condi t ion.  



Flight 
conaftion 

5 
6 
7 
8 

10 
11 
12 
13 
14 
15 
16 

:8' 
19 
20 

9 

-2.641 
-2.193 
-1.996 
-1.884 
-2.804 
-2.456 
-2.208 
-2.073 
-1.017 
-2.753 
-2.608 
-2.450 
-1.300 
-1.175 
-1.135 

Feedback Control Gains, Elevator Rate 

V 

-0.001 
-0.000 
-0.000 
-0.000 
-0.001 
-0.001 
-0.001 

0.000 
-0 .ooo 
-0.002 
-0.002 

0.000 
-0.000 
-0 .ooo 
-0.000 

a 0 6 e 6 ec W 

0.000 0.000 1.133 5.218 1.384 
0.845 0.006 2.641 7,874 2.571 
1.138 0.003 3.911 9.480 3.370 
1.810 0.001 5.178 lo.-820 4.344 
0.867 -0.027 0.966 4.820 2.660 
1.209 0.008 1,824 6.590 4.743 
1.290 0.008 2.927 8.259 6.785 
1.858 0.001 3.386 8.877 8.566 

10.880 0.000 3.094 9.128 18.770 ._ 
1.358 -0.148 1.260 5.490 3.361 
1.309 -0.015 1.623 6.212 4.084 
1.724 0.001 1.937 6.785 5.282 
8.859 0.000 1.934 7.211 12.900 
9.876 0.001 1.971 7.352 14.170 

10.310 0.001 2.130 7,643 34.720 



Feedback Control Gains, Aileron Rate 

Flight 
Condition 

5 
6 
7 
R 

1 0 
11 . 
1 2 
13 
1 4 
13 
16 
17 
l? 
1 ,J 
2c 

P 

1 1L;= 
0:711; 
ii.553 
!I . 3 3 6 
1. 5 ‘I 4 
1.073 
0.827 
0 , 7 00 
0.841 
1.610 
1.441 
1.220 
1.230 
1.253 
1.332 

r 

3,095 -iO.dOij 
2.616 -1 2.?20 
3.12ti -16.413 
4.239 -21.54!.l 
3.b1,. -11.033 
3.232 -13.520 
i.946 -13.350 
3 A01 -"5.520 
5.964 -14.9HF 
3.686 -72.91G 
3.45.iI -73.170. 
3 .2s3 -13.270. 
5.4i3 -20.553 
6.338 -28.780 
6.657 -34.873 

6 

6.088 
5.5?R 
5.381 
5.323 
6.045, 
5.489 
5.342 
5.368 
5.574 
6 6c)8 
;:Li2s 
S.4bll 
5.609 
5,845 
5.976 

6 a 

0.485 -0. 0'21 5.29.3 
0.922 -0,133 7.200 
1.110 -0.410 7.905 
1.058 -0.814 7.782 
0.500 0.008 5.343' 
0.825 -0.051‘ 6.797 
1.043 -0.137 7.611 
1.040 -0.29.0 ; 7.624: 
0.750 -0.29.9 6.514 
0.699 0.030 6.232. 
0.817 O'.Ol 8 6.712 
0.872 -0.017 6.942 
0.7'03 -0:128 6.261 
0.619 -0.218 5.930 
0.554 -0.25'1 5.659. 

6% r 
6 ac 6 rc 

0.221 
0.094 

-0.165 
-G.541 

0.326 
0.213 
0.133 

-0.083 
-0.237 

0.407 
0.375 
0.295 
0.028 

-0.098 
-0.077 

W 

-1.365 
-1.246 

0.076 
3.104 

-1.725 
-2.176 
-1.094 
-0.427 

0.772 
-2.257 
-2.297 
-2.099 
-2.169 
-3.438 
-4.827 



Feedforward Control Gains, Aileron Rate 

Flight 
Condition 

;: 4 
6 
7 
8 

1C 
il 
12 
13 
14 
15 

1; 

:7 
1Y 
l? 
21; 

Pm 

-1.301 
-1.035 
-0.cjC5 
-0.9114 
-7.371 
-1.083 
-0.586 
-0.9ti; 
-1 098 
*,:,t;!: 
-1.096 
-1.C62 
-1.151 
-1.209 
T1.2L3 

r m 

-1.01;: 
-0.453 
-G.342 
-0.344 
-1 .lG5, 
-0.5e4 
-0 .lik9 
-C.j5i 
-C.5ti9 
-0.531 
-0.67; 
-c .5HC 
-c. -i_ch 
-b .E?35 
-0.9c7 

'rn 'm 

2.835 -6.314 -8.698 -0.947 
1.906 -5.675 -U.621 -0.655 
1.590 -5.513 -3.728 -0.550 
1. SE!3 -5.473 -3.704 -0.545 
2.475 -6.246 -3.366 -0.954 
2.178 -5.637 -5.576 -0.744 
7.782 .-5.1151 -4.257 -0.613 ', 
1.739 -5.473 -4.121 -0.599 
2.220 -5.734 -5.596 -0.764 
2. 56, 9 -5.741 -7.329 -0.853 
2.31c -5.541 -6.176 -0.782 
2.154 -5.503 -5.512 -0.737 
i.SCi6 -5.742 -6.731 -0.853 
2.G6C -5.476 -7.366 -0.899 
2.769 -6.095 -7.lju7 -O.Qqr 



Flight 
Condition 

S r 
; 
E 

1C 
l! 
12 
13 
14 
15 
16 
17 
18 
19' 
2c 

pm 

o.oao 
-0.C76 
-0.150 
-0.191 

0.053 
-0.oLi9 
-0.127 
-0.757 
-0.159 
-0.033 
-0.C62 
-0.G65 
-0.i13 

0.013 
0.702 

Feedforward Control Gains, Rudder Rate 

r m 

0.332 -0.142 0.172 2.478 -0.054 
-0.. 044 0.109 -0.442 -0.444 -0.026 
-0.101 0.291 -0.788 -0.520 -0.090 
-0.127 0.386 -0.983 -1.158 -0.123 

0,333 -0.CG3 0.043 3 K'18 L.. d I -0.133 
c.032 O.OlU -0.362 0.062 -0.001 

-0.063 0.220 -0.695 -0.785 -0.062 
-0.111 0.299 -0.830 -1.006 -0.089 
-0.113 G.296 -0.841 -1.067 -0.085 

G.154 G.052 -0.314 0.950 -0.064 
0.069 0.057 -0.433 0.273 -0.030 
0.005 0.092 -0.524 -G. 197 -0.024 

-0.'014 G.134 -0.646 -0.410 -0.031 
0.094 -0.165 -0.079 0.495 0.068 
0.162 -0.370 0.346 1.031 0.136 

'rn 'm 



Flight 
Condition 

5 3.307 -4.243 -0.393 0.311 0.047 0.384 0.209 
6 G.3CC -4.675 -1.397 3.758 0.050 1.172 0.195 
7 0.256 -4.018 -7.033 1.009 0.064 1.521 0.161 
E 0.217 -3.187 -17.199 1.137 0.080 1.489 0.146 

10 0.387 -4.592 -G.197 0.345 0.056 0.356 0.261 
11 0.365 -4.692 -1.268 0.644 0.073 0.816 0.253 
12 0.305 -3.988 -7.037 0.885 0.081 1.143 0.248 
13 0.300 -4.128 -8,023 7.007 0.071 1.298 0.786 
14 0.311 -6.163 -17.88G 1.059 0.058 1.054 0.115 
iS 0.420 -4.373 -2.107 0.537 0.077 0.465 0.323 
16 0.381 -3.979 -3.999 0.619 0.082 0.565 0.322 
17 0.345 -3.e17 -5.829 0.686 0.080 0.636 0.294 
18 0.377 -4.585 -13.030 G.805 0.071 0.583 0.201 
1s 0.343 -6.769 -8.749 0.269 0.065 0.771 0.169 
20 0.264 -9.416 -1.112 -0.123 0. G79 0.992 0.211 

P r 

Feedback Control Gains, Rudder Rate 

6 a 6 ac 
6 rc w 

4.593 -0.701 
7.970 -2.307 
9.272 -4.352 
9.492 -6.577 
4.359 -0.766 
6.641 -1.859 
8.014 -4.024 
8.479 -5.273 
7.620 -10.390 
5.013 -1.217 
5.600 -1.670 
5.997 -2.161 
5.766 -4.193 
6.406 -5.265 
7.048 -5.933 
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APPENDIX I 

Continuous Time Closed-Loop Eigenvalues of Control System 

The control gains were designed initially in continuous time using 

the matrices of Appendix A, yielding a closed-loop system of the form 

i=@ -- -BG)x (I.11 

The eigenvalues of (A_ __ - B G) are tabulated below. Conjugate pairs are 

listed together. 

Flight Condition 
Longitudinal System 

Eigenvalues 
Real Part Imaainarv Part 

5 -3.349 0 
-12.125 0 
-3.041 f3.6702 
-1.506 0 
-.000499 0 
-.00137 0 

6 ,-5.917 0 
-12.76 0 
-4.668 f6.557 
-3.48 0 
-.0161 0 
-.000045 0 



I?? 

7 

a 

io 

11 

-7.815 
-13.484 

.: 
-5.59 
-5.49 
-.0000233 
-.02157 

-9.601 0 
-14.01 0 

-6.303 210.703 

-8.0 0 
.-.02386 0 

-.0000145 0 

-.332 .O 
-.00327 0 
A.00025 0 
-12.08 0 
-2.732 23.28 
-1.137 0 

A.4977 0 
-.000173 0 
-.00647 0 
-3.806 k5.019 
-2.133 0 

-12.34 0 

.O 
0 

k8.69 
0 
0 
0 



I-3 

12 ,-.6636 

, 

13 

14 

15 

-12.88 
-4.;87 
-3.646 
-<0000867 
-.00941 

-.747 0 
-13.139 0 
-5.12 k7.897 
-4.586 0 
-.0121 0 
-.0000106 0 

-.00251 0 
-.996 0 
-.00000377 0 
-5.177 kg.918 
-13.36 0 
-5.027 0 

-.5421 0 
-12.14 0 
-3.083 23.840 
-1.2484 0 
-.00982 0 
-.0000616 0 

0 
0 

f6.97 
0 
0 
0 



16 -.6196 
-12.25 
-3.524 '. 

: 

-1.635 
-.000872 
-.6196 

17 -.697 
-.0000534 
-12.38 
-3.85 
-2.113 
-..0055 

18 

19 -1.084 0 . 

20 

-.929 
-12.61 
-4.04 
-2.536 
-. 0189 
-.0185 

-12.65 
-4.097 
-2.747 
-.0000288 
-.00203 

-1.239 
-12.743 
-4.252 

-2.986 
-.0000062 
-.00684 

0 

,o ‘. 
:, ’ 
.f4.538 '.- 

: 
,,. 

0 
0 
.o : .,I 

0 
0 

O ._ 
f5.212 

0. : 
.;.o 

0 

0 

k6.96 

0 . 
0 :‘. 

:. 
0 ” . .;.. 

0 
'f7.31 ~ 

0 
0 
0 -' 

0 
0 

27.697‘ 

0 

0 

0 

t 



-24.R87 

Closed-loop Eigenvalues, Lateral System 

Continuous Time 

-29.999 
0.0 

20.999 
0.0 

24.887 

-2.536 -2.536 -5.164 
4.007 -4,007 0.0 
4.742 4.742 5.164 

-2.078 .-3,349 . ,.I, 
-2.184 . 0.0 

3.015 3.349' 

-29,989 -24.217 -3.667 ~3.667 -4.812 
0.0 0.0 5.020 -5.020 4.566 

29.989 24.217 6.216 6.216 6.633 

-7.759 
0.0 
7.759 

-5i917 
0.0 
5.917 

- 29.9u5 -23.459 -4.078 -4.078 -6.775 
0.0 0.0 5.540 -5.540 6,238 

29.945 23.459 6;879 6.879 9.309 

-1.846 -2..078 
0.0 2.184 
1.846 3.015 

-4,812 -3.853 
-4.566 0.0 

6.633 3.853 

-6.775 -9.556 
-6.238 0.0 

9.209 9.556 

-4.293 -11.251 
-5.226 0.0 

6.764 11.251 

-1.721 -1.850 
0.0 2.037 
1.721 2.752 

-2.861 -3.306 
0.0 3.373 
2.861 4.723 

-4.865 -3.863 
-5.063 0.0 

7.021 .3.863 

,-S-231 -7.815 
0.0 0.0 
5.231 7.815 

-29.844 -23.359 -7.313 -7.31? -4.293 
0.0 0.0 ?.950 -7.950 5.226 

29.R44 23.359 10,802 ?0,802 6.764 

-6.209' -9.600 
0.0 0.0 
6.209‘. 9.600 

-3O.r)OO -24.921 -2.265 -2.265 -u.u97 
0.0 0.0 3.931 -3.931 0.0 

30.000 24.921 4.537 4.537 u-u97 

-1.850 -0.332 
-2.037 0.0 

2.752 .0,332 

-29.996 -24.641 -3.140 -3.140 -.6.125 
0.0 0.0 4.863 -4.863 0.0 

29.996 24.641 5.789 5.789 6.?25 

-3.306 -0.498 
-3.373 0.0 

4.723 0.498 

-29 .?79 -24.201 -3.550 -3.55a -4.865 
0.0 0.0 5.229 -5.229 5.063 

29.979 24.201 6.323 6.323 7.021 

-7.528 -0.664 
0.0 0.0 
7,528 0.664 

-29.961 -2U.166 -5.337 -5.337 -3.665 -3.665 -8.141 -4.506 -0.747 
0.0 0.0 5.801 -5.801 5.283 -5.283 0.0 0.0 0.0 

29.961 29.166 7.892 7.iY82 6.430 6.430 8.141 4.506 0.747 

FCC 5 

PC8 6 

FCI 7 

FCL 8 

FC? 10 

PC) 1' 

FC# 12 

PC# 13 
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Closed-loop Eigenvalues, Lateral System 

Continuous Time 

FCU 15 

FC% 16 

FCfi 17 

FCU 18 

PCQ 19 

FCW 20 

-29.962 -24.833 -3.904 -3.904 -3.098 -3.098 -6.893 -4.876 
0.0 0.0 6.S47 -6.547 4.435 -4.435 0.0 0.0 

29.962 24.R33 7.623 7.623 5.410 5.410 6.993 U.876 

-0.996 

:: ii96 

-29.999 -24.571 -2.467 -?a467 -4.960 -1.950 -2.180 -2.180 -0.542 
0.0 0.0 4.349 -4.349 0.0 0.0 2.475 -2.475 0.0 

29.999 24.971 5.000 5.000 4.860 1.950 3.299 3.290 0.542 

-29.O96 -24.7911 -2.739 -2.739 -5.374 -2.22s -2.565 -2.565 -0.620 
0.0 o-0 4.659 -4.659 O.@ 0.0 2.950 -2.950 0.0 

29.996 24.794 5.405 5.405 5.374 2.225 3.909 3.909 0.620 H 

-23,994 
0.0 

29.994 

-24,739 -5.900 

2kj139 
0.0 
5.900 

-2.999 -2.998 -2.476 -2.838 -2.838 -0.697 
4.869 -4.869 0.0 3.424 -3.424 0.0 
5.718 5.718 2.476 4.447 4.447 0.697 

b 

-29.995 -24.869 -2.725 -2.725 -2.545 -2.545 -5.385 -2.759 -0.929 
0.0 0.0 4.727 -4,727 3,822 -3.822 0.0 0.0 0.0 

29.995 24.969 5.1156 5.456 4.592 4.592 5.385 2.759 0.929 

-29.993 -24.880 -2.867 -2.867 -2.600 -2.600 -5.256 -3,289 -1.084 
0.0 0.0 4.986 -4.986 3,660 -3.660 0.0 0.0 0.0 

29.993 2-4. 9RO 5.751 5.?51 4.490 4.490 5.256 3.289 1.084 

-29.993 -24.990 -3.08B -3.098 -2.605 -2.605 -5.151 -3.870 -1,239 
0.0 0.0 5.177 -5.177 3.567 -3.567 0.0 0.0 0.0 

29.993 24. qqo 6.02P 6.02!3 4.417 4.417 5.151 3.870 1.239 
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APPENDIX J 

C* Criterion for Handling Quaiities 131 

There are numerous desirable specifications on handling qualities. 

The handling quality of an aircraft is often expressed by means of a 

"pilot rating" from one to ten (Cooper-Harper scale) with a rating 

of one for the best handling aircraft. However, in practical aircraft 

design no single handling quality criterion is the ultim.ate. The 

C*-criterion is a particular criterion expressed in terms of the short- 

period response of the aircraft. It is a general concept which includes 

the traditional short period damping requirements, and incorporates the 

notion of response to pilot inputs. 

The usual definition of the C* quantity is 

c*=a +v q (J.1) 
Z co 

where V co is the "crossover" velocity, the velocity at which the con- 

tribution of pitch rate q equals the contribution of normal accelera- 

tion aZ to the C* response. 

The C* response of the aircraft can be determined in terms of 

the system response to a step input. Figure J.l contains the regions 

of the C* envelope. Responses typical of the various regions can be 

identified asi 

Region 1: optimum response 

Region 2: nou-critic31 operation cf veiiI.clr 





J-3 

Region 3: conditions.not covered by 1, 2, and 4 

Region 4: power approach response ,i 
, ,:' 

For the purposes of obtaining desirable C* handling qualities 

during normal operation, the step response of the system must lie in 

Region I. 
I 

Various studies have been made to determine the crossover velocity 

at various flight conditions. With respect to the F-8C aircraft 

dynamics, Vco can be approximate for all flight conditions as 

V co x 10 g's-seconds (J.2) 

where the units of q are radians per second and the units of a are z 

g's. , 

Thus, the C* quantity defined as 

C* X as + 1Oq (J-3) 

represents a desirable handling qualities balance between q and aZ 

for the F-8C aircraft. This quantity represents a useful criterion 

for the evaluation of the short-period performance of the aircraft. 
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APPENDIX K 

Kalman Filter Gains 

The update equation of the Kalman filter is given in Appendix F 

and Appendix C as 

g(t) = %(tlt-1) + K(Ek) - c +lt-1)) (K.1) 

The matrix C is obtained from Appendix D and Chapter 3. The predicted 

value of the state is obtained using the discrete matrices of Appendix E. 

For the longitudinal system, 2 consists of the vector 

9 
- 0 
2= 

a 2 
(K.2) 

The transpose of the matrix E is tabulated in this appendix for each 

flight condition. 

For the lateral system, 

r 
a 

Y 
P 

8 a 
6 r 

(K.3) 

The transpose of the matrix g is tabulated in this appendix. 
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. I .  

Flight 
Condition 

5 

6 

7 

8 
: 

10 

11 

12 

13 

14 

15' 

16 

17 

18 

19 

20 

Longitudinal Kalman Filter Gains 

Q V a 0 

0.401 17.500 0.163 0.023 
0.030 -1.580 0.030 0.011 

6 6 e ec 

-0.025 0.0 
0.003 0.0 

0.452 24.110 0.077 0.008 -0.060 
0.041 -2.094 0.020 0.008 0.006 

0.459 30.250 0.045 0.002 -0.085 
0.038 -1.979 0.014 0.006 0.006 

0.469 40.940 0.027 -0.000 -0.102 
0.031 -2.063 0.010 0.004 0.006 

0.274 6.296 0.125 0.044 -0.000 
0.019 -0.415 0.021 0.014 0.000 

0.367 14.400 0.083 0.025 -0.043 
0.028 -1.792 0.018 0.011 0.004 

0.408 19.380 0.056 0.011 -0.068 
0.033 -1 ,794 0.015 0.008 0.005 

0.420 -308.200 0.063 0.190 -0.077 
0.036 27.770 0.012 -0.009 0.006 

0.591 27.850 0.035 0.012 -0.061 
0.037 -3.417 0.010 0.008 0.006 

0.330 11.300 0.089 0.040 -0.028 
0.018 -7.238 0.018 0.013 0.002 

0.358 11.060 
0.021 -1.215 

0.080 
0.017 

0.110 
O.OlG 

0.052 
0.013 

0.046 
0.013 

0.042 
0.012 

0.034 -0.036 
0.013 0.003 

0.336 -312.600 
0.027 43.950 

0.197 
-0.011 

0.565 
0.031 

2.293 
-0.279 

0.031 
0.012 

0.563 1.032 
0.032 -0.064 

0.028 
0.011 

0.552 0.957 
0.033 -0.025 

0.027 
0.011 

-0.000 
0.000 

-0.000 
0.000 

-0.000 
0.000 

-0.000 
-0,000 

0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

E 

0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

W 

-0.767 
-0.060 

-0.314 
-0.042 

-0.149 
-0.029 

-0.075 
-0.017 

-0.417 
-0.031 

-0.252 
-0.029 

-0.143 
-0.026 

-0.111 
-0.022 

-0.110 
-0.009 

-0.285 
-0.022 

-0.245 
-0.021 

-0.237 
-0.019 

-0.174 
-0.011 

-0.154 
-0.010 

-0.138 
-0.009 



I Flight 
Condition P 

5 
-0.020 0.006 -0.018 -0.025 

0.669 -0.040 0.010 0.040 
-0.642 0.082 -0.058 -0.193 

0.352 -0.046 0.055 0.149 
0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 

-0.025 
0.657 

-1.G70 
0.093 
0.0 
0.0 

7 
-0.029 

0.538 
-1 -390 

0.044 
0.0 
0.0 

8 -0.001 0.045 
0.421 -0.089 

-1.430 0.533 
0.014 -0.032 
0.0 0.0 
0,o 0.0 

10 -0.021 0.005 
0.402 -0.026 

-0.415 c.045 
0.183 d-036 
0.0 0.0 
0.0 0.0 

Lateral Kalman Filter Gains 

r B 

0.019 -0.020 -0.038 
-0.067 0.004 0.024 

0.204 -O.i)55 -9.2:4 
-0.051 0.027 0.085 

0.0 0.0 0.0 
0.0 0.0 0.0 

c.034 
-0.067 

0.386 
-0.043 

0.0 
0.0 

-0.020 
0.002 

-0.053 
0.013 
0.0 
0.9 

-0.019 
-0.000 
-0.045 

0.007 
0.0 
0.0 

-0.015 
0.011 

-0.043 
0.054 
0.0 
0.0 

-o.oI?s 
0.012 

-0.150 
0.037 
0.0 
0.0 

-0.028 
0.004 

-0.136 
0.018 
0.0 
0.0 

-0.022 
0.048 

-0.150 
0.160 
0.0 
0.0 

8 a 

0.0 
0.0 
0.0 
0.0 
0.200 
0.0 

0.0 
0.0 
0.0 
0.0 
0.200 
0.0 

6.0 
O*@ 
0.0 
0.0 
0.200 
0.0 

0.9 
0.0 
0.0 
0.0 
0.200 
0.c 

0.0 
0.6 
0.0 
0.0 
0.200 
0.0 

6 r 

0.0 
0.0 
0.0 
0.0 
0.0 
0.200 

0.0 
0.0 
0.0 
0.0 
0.0 
0.200 

0.0 
0.0 
0.0 
0.0 
0.0 
0.200 

0.0 
0.0 
0.0 
0.0 
0.0 
0.200 

0.0 
0.0 
0.0 
0.0 
0.0 
0.200 

6 ac 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

8 
rc 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0 i 0 
0.0 
0.0 
0.0 
0.0 

0.0 

8:8 
0.0 
0.0 
0.0 

W 

-0.024 
-0.024 
-0.024 
-0.024 

0.0 
0.0 

-0.002 
-0.002 
-0.002 
-0.002 

0.0 
0.0 

7 w 
0.005 
0.005 
0.005 
0.005 
0.0 
0.0 

0.007 
0.007 
0.007 
0.007 
0.0 
0.0 

-0.057 
-0.057 
-0.057- 
-0.057 

0.0 
0.0. 



Lateral Kalman Filter Gains 

12 -0.015 (3.021 -d.O2i; -0.032 
0.36F -0.ti67 O.OG2 0.019 

-1.CSG 0 .292 -0.054 -0.197 
3.072 -0 .OUG 0.020 0.053 
0. 0 C.0 0.0 0.0 
9.3 0 .3 0.0 0.0 

13 -!I.015 C.C26 
3.3t;o -0. U6d 

-1 .i!9U 0.319 
9.065 - 0 . 0 u 4 
(I . 0 C-6 
C.0 (I , (1 

14 -Q.347 
0.414'; 

-1.190 
'J.075 
U.0 
0.0 

15 -0,ULO 
3.472 

-!J.566 
3.105 
0.0 
0.C 

. 

Flight 
Condition P r B 

11 - 0 . 0 i 1 3 .oos -0.016 -0.032 
0.474 -C.O4L 0. OGfn G.940 

-0.645 0.092 -O.OOi -0.187 
0.15S -0.045 0.037 0.133 
0.0 U,D 0.0 0.0 
0.0 0.0 0.0 0.0 

0 . 0 2 H 
-0.c7u 

ii 7 . L5 
-ci.u35 

0.0 
0.0 

U.tiO5 
-0.035 

C.064 
-G.O34 

0 .o 
0.0 

-C.O20 
0,002 

-0.051 
U.Cl6 
u.u 
0.0 

-0.016 
o.oc3 

-0.03; 
c.012 
0.0 
0.0 

-O.QlL 
0.007 

-0.037 
0.044 
0.0 
0.0 

-0.032 
0.017 

-0.122 
0,043 
0.0 
0.0 

-0.043 
0.020 

-0.146 
0.045 
0.0 
0.0 

-0.023 
0.043 

-c. 150 
0.755 
0.9 
0.0 

6 a 

0.0 
0.0 
0.0 
0.0 
0.200 
0.0 

0.0 
0.0 
0.0 
0.0 
0.200 
0.0 

0.0 
0.0 
0.0 
0.0 
0.200 
0.0 

0.0 
0.0 
0.0 
0.0 
0.2dO 
0.0 

0.0 
0.0 
9.0 
0.0 
0.200 
0.0 

6 
r 

0.0 
0.0 
0.0 
0.0 
0.0 
0.200 

0.0 
0.0 
0.0 
0.0 
0.0 
0.200 

0.0 
0.0 
0.0 
0.0 
0.0 
0.200 

0.0 
0.0 
0.0 
0.0 
0.0 
0.200 

0.0 
0.0 
0.0 
0.0 
0.0 
0.200 

6 ac 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

6 rc 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 -0.016 
0.0 -0.016 
0.0 -0.016 
0.0 -0.016 
0.0 0.0 
0.0 0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 -0.008 
.o. 0 -0.008 
0.0 -0.008 
0.0 -0.008 
0.0 0.0 
0.0 0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

W 

-0.034 
-0.034 
-0.034 
-0.034 

0.0 
0.0 

-0.012 
-0.012 c P 
-0.012 
-0.012 0.0 0.0 

-0.037 
-0.037 
-0.037 
-0.037 

0.0 
0.0 



Lateral Kalmn Filter Gains 

Flight 
Condition 

16 

17 

18 

19 

20 

P r B 

-0.018 c.007 -0.015 -0.027 
0.408 -0.048 0.00s 0.035 

-0,765 0.116 -0.043 -0.177 
0.134 mC.042 0.039 0.131 
0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 

-0.013 0.010 -0.01a -0.028 
0.3a9 -0.055 0.003 0.028 

-0.892 0.173 -0.049 -0.156 
0.106 -0.947 0.033 0.102 
0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 

-0.019 C.Cl4 -0.017 -0.077 
0.412 -0.064 0.093 0.024 

-1.030 0.202 -0.040 -0.174 
0.092 -0.042 O.G25 O.Ob6 
0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 

-0.024 0.013 -0.015 -0.042 
0.498 -0.354 0.003 0.031 

-0.861 0.128 -0,330 -0.167 
0.119 -iI. 0.023 0.103 
0.0 0.0 0.0 0.0 
c.0 0.0 0.0 0.0 

-0.328 0.012 
0.535 -0.045 

-0.724 C.OE7 
0.736 -0.036 
0.0 0.0 
0.0 0.0 

-0.013 
0.003 

-0.022 
0.020 
0.0 

-0.045 
0.035 

-0.150 
0.115 
0.0 

0.0 0.0 

6 a 

c.0 
0.0 
0.0 
0.0 
0.200 
0.0 

0.0 
0.0 
0.0 
0.0 
0.2GO 
0.0 

0.0 
c-0 
0.0 
0.0 
0.200 
0.0 

0.0 
0.0 
0.0 
0.0 
0.200 
0.0 

0.0 
0.0 
0.0 
0.0 
0.200 
0.0 

6 
r 

0.0 
0.0 
0.0 
0.0 
0.0 
0.200 

0.0 
0.0 
0.0 
0.0 
0.0 
0.200 

0.0 
0.0 
0.0 
0.0 
0.0 
0.200 

0.0 
0.0 
0.0 
0.0 
0.0 
0.200 

0.3 
0.0 
0.0 
0.0 
0.0 
0.200 

6 ac 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

6 rc 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

W 

-0.031 
-0.031 
-0.031 
-0.031 

0.0 
0.0 

-0.02s 
-0.025 
-0.025 
-0.025 

0.0 
0.0 

-0.017 7 ul 
-0.017 
-0.017 
-0.017 

0.0 
0.0 

-0.016 
-0.016 
-0.016 
-0.016 

0.0 
0.0 

-0.014 
-0.014 
-0.014 
-0.014 

0.0 
-0.0 



L-l 

APPENDIX L 

Discrete Time Eigenvalues 

In the absence of pilot commands, the complete filtering and control 

systemcan be described by the equations: 

z(t+l) = s x(t) + B+ u(t) + L S(t) (4.1) 

g(t+l) = A+ g(t) + B+ l(t) (L,.2) 

g(t) = c(t) + H(z(t) - C H(t)) (L.3) -- -- 

u(t) = -G G(t) (L.4) -- 

z(t) - - = c x(t) + gt) CL.51 

The eigenvalues of the system are the eigenvalues of the closed- 

loop control system matrix (A, - SG) and the eigenvalues of the Kalman _ 

filter (I - H CIA+. - -- 

The eigenvalues of the closed loop control system matrix (% - B&J 

and the Kalman filter matrix (I - H C)s are tabulated below for each - -- 

flight condition in the longitudinal and lateral system. Three number's 

are given for each eigenvalue, its real part, its imaginary part, and 

its magnitude. 



Longitudina.1 System 
---- 

Closed-loop Control Eigenvalues, Flight Condition 5 

0.2215 0.6332 0.6332 0.9996 0.9996 0.7934 0.6580 
0.0 0.2993 -0.2993 0.0056 -0.0056 0.0 0.0 
0.2215 0.7004 0.7004 0.9996 0.9996 0.7934 0.6580 

Closed-loop JXBF Eigenvalues, Flight Condition 5 

0.9965 0.4389 0.4389 1.0000 0.2263 0.8248 0.9965 
-0.0120 0.2904 -0.2904 0.0 0.0 0.0 0.0120 

0.. 9966 0.5262 0.5262 1.0000 0.2263 0.8248 0.9966 

Closed-loop Control Eigenvalues, Flight Condition 6 

0.3964 0.3964 0.2006 1 .oooo 0.9980 0.6rrB8 0.4773 
0.4257 -0.4257 0.0 0.0 0.0 0.0 0.0 
0.5817 0.5817 0.2006 1.0000 0.9980 0.6488 0.4773 

Closed-loop KBF Eigenvalues, Flight Condition 6 

0.9972 1.0000 0.1631 .O.l63i'l '0.5485 0.2432 0.9972 
-0.0066 0.0 0.2819 -0.2819 0.0 0.0 0.0066 

0.9972 1.000 0.3257 0.3257 0.5485 0.2432 0.9972 



0.2458 
0.4783 
0.5377 

0.2458 0.1808 1.0000 0.9973 0.5071 
-0.4783 0.0 0.0 0.0 0.0 

0.5377 0.1808 1.0000 0.9973 0.5071 

Closed-loop KEF Eigenvalues, Flight Condition 7 

0.3765 
0.0 
0.3765 

0.9974 1.0000 0.0265 0.0265 0.2964 0.2964 0.9974 
-0.0047 0.0 0.2223 -0.2223 0.0683 -0.0683 0.0047 

0.9974 1.0000 0.2239 0.2239 0.3041 0.3041 0.9974 

Closed-loop Control Eigenvalues, Flight Condition 8 

0.0983 0.0983 0.1641 1.0000 0.9970 0.3686 0.3012 
0.5017 -0.5077 0.0 0.0 0.0 0.0 0.0 
0.5112 0.5112 0.1641 1 .oooo 0.9970 0.3686 0.3012 

Closed-loop KBF Eigenvalues, Flight Condition 8 

0.9982 1.0000 -0.0587 -0.0587 0.2169 0.2169 0.9982 
-0.0014 0.0 0.1350 -0.1350 0.1252 -0.1252 0.0014 

0.9982 1.0000 0.1472 0.1472 0.2504 0.2504 0.9982 

Longitudinal System 

Closed-loop Control Eigenvalues, Flight Condition 7 

, : 

‘_ 



0.2204 
0.0 
0.2204 

0.6546 0.6546 0.8675 1 .oooo 0.9996 
0.2868 -0.2868 0.0 0.0 0.0 
0.7146 0.?146 0.8675 1.0000 0.9996 

Closed-loop KBF Eigenvalues, Flight Condition 10 

0.9594 
0.0 
0.9594 

0.9992 1.0000 0.7303 0.7303 0.2231 0.8789 0.9992 
-0.0127 0.0 0.2418 -0.2418 0.0 0.0 0.0127 

0.9993 1.0000 0.7693 0.7693 0.2231 0.8789 0.9993 

Closed-loop Control Eigenvalues, Flight Condition 11 

0.2124 
0.0 
0.2124 

0.5128 0.5128 0.9999 0.9993 0.7665 
0.3740 -0.3740 0.0 0.0 0.0 
0.6347 0.6347 0.9999 0.9993 0.7665 

Closed-loop KBF Eigenvalues, Flight Condition 11 

0.9979 
-0.0088 

0.2346 1.0000 0.5797 0.5797 0.7399 
0.0 0.0 0.2870 -0.2870 0.0 

0.9397 
0.0 
0.9397 

0.9979 
0.0088 
0.9979 

Longitudinal System 

Closed-.loop Control Eigenvalues, Flight Condition 10 

0.9979 0.2346 1.0000 0.. 6469 0.6469 0.7399 



0.3717 
0.4421 
0.5776 

0.9973 
-0.0082 

0.9974 

0.3088 
0.4700 
0.5624 

0.9994 
0.0 

Longitudinal System 

Closed-loop Control Eigenvalues, Flight Condition 12 

0.3717 0.1978 1.0000 0.9988 0.6360 
-0.4421 0.0 0.0 0.0 0.0 

0.5776 0.1978 7 .oooo 0.9988 0.6360 

Closed-loop KBF Eigenvalues, Flight Condition 12 

1.0000 0.4172 0.4712 0.5755 0.2713 
0.0 0.3039 -0.3039 0.0 0.0 
1.0000 0.5162 0.5162 0.5755 0.2713 

Closed-loop Control Eigenvalues, Flight Condition 13 

0.3088 0.1910 0.9985 1 .oooo 0.5669 
-0.4700 0.0 0.0 0.0 

0.5624 0.1910 
i: 09985 

1.0000 0.5669 

Closed-loop KBF Eigenvalues, Flight Condition 13 

1.0000 0.3166 0.3166 0.2983 0.4905 
0.0 0.3167 -0.3167 0.0 0.0 

0.9994 1.0000 0.4478 0.4478 0.2983 0.4905 

0.9204$ 
0.0 
0.9204 

0.9973 
0.0082 
0.9974 

0.9109 
0.0 
0.9109 

0.9980 
0.0 
0.9980 



Longitudinal System 

Closed-loop Control Eigenvalues, Flight Condf.tion 14 

0.1730 0.1730 0.5366 1.0000 0.9997 0.1819 0.8830 
0.5412 -0.5412 0.0 0.0 0.0 0.0 0.0 
0.5682 0.5682 0.5366 1.0000 0.9997 0.1819 0.8830 

Closed-loop KBF Eigenvalues, Flight Condition 14 

0.9998 1.0000 0.0725 0.0725 0.3926 0.2717 0.9998 
-0.0011 0.0 0.3331 0.3331 0.0 0.0. 0 .OOll 

0.9998 1.0000 0.3409 0.3409 0.3926 0.2717 0.99.98 

Closed-loop Control Eigenvalues, Flight Condition 15 

0.2184 0.6'082 0.6082 0.8557 1.0000 0.9988 0.9345 
0.0 0.3190 -0.3190 0.0 0.0 0.0 0.0 
0.2184 0.6868 0.6868 0.8557 7 .oooo 0.9988 0.9345 

Closed-loop KBF Eigenvalues, Flight Condition 15 

0.9983 0.2273 1.0000 0.6938 0.6938 0.8435 0.9983 
-0.0109 0.0 0.0 0.2462 -0.2462 "0.0 0.0109 

0.9984 0.2273 1.000 0.7362 0.7362 0.8435 0.9984 



Longitudinal System 

Closed-loop Control Eigenvalues, Flight Condition 16 

0.5507 
0.3532 
0.6543 

0.5507 0.2150 0.8155 1 .oooo 0.9998 
-0.3532 0.0 0.0 0.0 0.0 

0.6543 0.2150 0.8155 1.0000 0.9998 

Closed-loop K!3F Eigenvalues, Flight Condition 16 

0.9982 
-0.0100 

0.9983 

0.2313 1.0000 0.6433 0.6433 0.7941 
0.0 0.0 0.2653 -0.2653 0.0 
0.2313 1.0000 0.6959 0.6959 0.7941 

Closed-loop Control Eigenvalues, Flight Condition 17 

0.5025 
0.3852 
0.6332 

0.5025 0.2113 0.7684 7.0000 0.9993 
-0.3852 0.0 0 .o 0.0 0.0 

0.6332 0.2113 0.7684 1.0000 0. 99'93 

Closed-loop KBF Eigenvalues, Flight Condition 17 

0.9989 0.9984 1.0000 0.6056 0.6056 0.7469 
0.0 0.0 0.0 0.3383 -0.3383 0.0 
0.9989 0.9984 1.0000 0.6937 0.6937 0.7469 

I. 

0.9255 
0.0 
0.9255 

0.9982 
0.0100 
0.9983 

0.9166 
0.0 
0.9166 

0.2231 
0.0 
0.2231 



0.4006 
0.4802 
0.6254 

0.4006 0.2041 0.7299 1.0000 0.9998 
-0.4802 0.0 0.0 0.0 O.@ 

0.6254 0.2041 0.7299 1 .ofloo 0.9998 

Closed-loop KBF Eigenvalues, Flight Condition 18 

0.8903 
0.0 
O.B903 

0.9999 
-0.0012 

0.9999 

1.0000 0.3283 0.3283 0 .‘6294 
0.0 

0.2231 
0.4210 -0.4210 0.0 0.0 

1.0000 0.5339 0.5339 -0.6294 0.2231 

0.9999 
0.0012 
0.9999 

Closed-loop Control Eigenvalues, Flight Condition I.9 -7 0 

0.3776 0.3776 0.2030 0.7li2 1 .oooo 0.9997 0.B733 
0.4960 -0.4960 0.0 0.0 0.0 0.0 0.0 
0.6234 0.6234 0.2030 0.7112 1.0000 0.9997 0.8733 

Closed-loop KBF Eigenvalues, Flight Conditidn 19 

0.9998 
-0.0025 

0.9998 

1.0000 0.2987 0.2987 0.5880 0.2231 
0.0 0.4269 -0.4269 0.0 0.0 
1.0000 0.5211 0.5211' 0.5880 0.22-31, 

0.9998 
0.0025 
0 ..9998 i 1 

Longitudinal System 

Closed-loop Control Eigenvalues, Flight Condition 18 



Longitudinal System 

Closed-loop Control Eigenvalues, Flight Condititih'20 

0.3480 0.3480 0.2004 0.6908 1.0000 0.9991 0.8565 
0.5072 -0.5072 0.0 0.0 0.0 0.0 0.0 
0.6151 0.6151 0.?004 0.6908 1.0000 0.9991 0.8565 

Closed-loop KBF Eigenvalues, Flight Condition 20 

0.9995 1.0000 0.2810 0.2810 0.5570 0.2231 0.9995 
-0.0022 0.0 0.4338 -0.4338 0.0 0.0 0.0022 

0.9995 1.0000 0.5169 0.5169 0.5570 0.2231 0.9995 



Lateral System 

-0.0542 -0.0105 0.6977 0.6977 0.7767 0.7767 0.8260 0.5453 0.6580 
0.0 0.0 0.4082 -0.4082 0.2648 -0.2648 0.0 0.0 0.0 
0.0542 0.0105 0.8083 0.8083 0.8206 0.8206 0.8260 0.5453 0.6580 

0.2064 0.9919 0.9440 0.7450 0.5801 0.0351 1.0000 0.0188 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.2064 0.9919 0.9440 0.7450 0.5801 0.0351 1.0000 0.0188 

0.5622 0.5622 0.6447 0.6447 0.4049 -0.1341 -0.1625 0.7233 0.4773 
0.5122 -0.5122 0.4687 -0.4687 0.0 0.0 0.0 0.0 0.0 
0.7605 0.7605 0.7971 0.7971 0.4049 0.1341 0.1625 0.7233 0.4773 

0.1148 0.9942 0.7799 0.7215 0.4648 0.0351 1.0000 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Closed-loop Control Eigenvalues, Flight Condition 5 

Closed-loop KBF Eigenvalues, Flight Condition 5 

Closed-loop Control Eigenvalues, Flight Condition 6 

Closed-loop KBF Eigenvalues, Flight Condition 6 

0.1148 0.9942 0.7799 0.7215 0.4648 0.0351 1.0000 

0.0188 
0.0 
0.0188 

1.0000 
0.0 
1.0000 7 

.G 

1 .oooo 
0.0 
1 .ooo.o 



Lateral System 

0.4602 0.4602 0.5940 0.5940 -0.2395 -0.1709 0.6805 0.3228 0.3765 
0.5993 -0.5993 0.5101 -0.5101 0.0 0.0 0.0 0.0 0, 0 
0.7556 0.7556 0.7829 0.7829 0.2395 0.1709 0.6805 0.3228 0.3765 

0.0768 F. 9962 0.6036 0.6036 0.4076 0.0351 1.0000 0.0188 
0.0 0.0 0.0950 -0.0950 0.0 0.0 0.0 0.0 
0.0768 0.9962 0.6110 0.6110 0.4076 0.0351 1.0000 O.OlB8 

0.3570 0.3570 0.5904 0.59ou 0.6550 -0.2542 -0.1652 0.2518 0.3012 
0.6666 -0.6666 0.4701 -0.4701 0.0 0.0 0.0 0.0 0.0 
0.7562 0.7562 0.7547 0.7547 0.6550 0.2542 0.1652 0.2518 0.3012 

0.9970 
0.0 

0.0553 0.4251 G.4257 0.3609 0.0351 
0.0 0.1251 -0.7251 0.0 0.0 

1.0000 
0.0 

0.997@ 0.0553 0.4432 0.11432 0.3609 0.0351 1.0000 

Closed-loop Control Eigenvalues, Flight Condition 7 

Closed-loop KBF Eigenvalues, Flight Condition 7 

Closed-loop Control Eigenvalues, Condition 8 

Closed-loop KJ3F Eigenvalues, Condition 8 

0.0188 
0.0 
0.0188 

P 

1.0000 
0.0 
1.0000 

1.0000 
0.0 
l.-0000 



,i 

Lateral System 

Closed-loop Control Eigenvalues, Flight Condition 10 

-0.0570 -0.0048 0.7208 0.7208 0.7982 0.7982 0.6068 0.8357 0.9594 
0.0 0.0 0.4148 -0.4148 0.2508 -0.2508 0.0 0.0 0.0 
0.0570 0.0048 0.8316 0.8316 0.8367 0.8367 0.6068 0.8357 0.9594 

Closed-loop KBF Eigenvalues, Flight Condition 10 

0.5992 0.5992 0.8135 0.9895 0.9742 0.0351 1.0000 0.0188 1.0000 
0.1594 -0.1594 0.0 0.0 
0.6200 0.6200 0.8135 0.9895 :::742 

0.0 0.0 0.0 0.0 
0.0351 1.0000 0.0188 1.0000 

Closed-loop Control Eigenvalues, Flight Condition 11 

0.6381 0.6381 0.6952 0.6952 0.7707 0.5134 -0.1165 -0.0899 0.9397 
0.4905 -0.4905 0.3972 -0.3972 0.0 0.0 0.0 0.0 0.0 
0.8048 0.8048 0.8007 O.E(c)@7 0.7707 0.5134 0.1165 0.0899 0.9397 

Closed-loop KE3F Eigenvalues, Flight Condition 11 

0.5184 0.5184 0.7949 0.9945 0.9332 0.0351 1.0000 0.0188 1.0000 
0.0619 -0.0619 0.0 0.0 'oi.0: .-..oio 0.0 0.0 0.0 
0.5221 0.5221 0.7949 0.9945 0.9332 0.0351 1.0000 0.0188 1.0000 



0.5368 
0.5415 
0.7625 

(3.5368 0.6398 0.6398 O.U336 -0.1592 
-0.5415 0.5044 -0.5044 0.0 0.0018 

0.7625 0.8148 0.814f! 0.4336 0.1592 

ClosedAloop KBF Eigenvalues, Flight Condition 12 

0.3216 
0.0 
0.3216 

0.9957 0.6817 0.6434 0.9178 0.0351 
0.0 0.0 0.0 0.0 0.0 
0.9957 0.6P17 0.6434 0.9178 0.0351 

Closed-loop Control Eigenvalues, Flight Condition 13 

0.5073 0.5073 0.6251 0.6251 0.3925 -0.1587 
0.5786 -0.5736 0.5c45 -0.5045 0.0 0.0 
0.7695 0.7695 0.8033 0.8033 0.3925 0.1587 

Closed-loop KBF Eigenvalues, Flight Condition 13 

0.2783 
0.0 
0.2783 

0.9963 0.6256 0.6256 0.9137 0.0351 
0.0 0.0804 -0.0804 0.0 0,. 0 , 
0.9963 0.6308 0.6303 0.9137 0.03Sl 

Lateral System 

Closed-loop Control Eigenvalues, Flight Condition 12 

-c!.1592 
-0.0018 

0.1592 

1.0000 
0.0 
1.0000 

-0.1901 
c.0 
0.1901 

l.COOO 
0.0 
1.0000 

0.7330 
0.0 
0.7330 

0.0188 
0.0 
0.0188 

0.7053 
0.0 
0.7053 

0.0188 
0.0 
0.0188 

0.9204 
0.0 
0.9204 ” 

0.9109 
0.0 
0.9109 

1 .oooo 
0.0 
1 .oooo 



0.503.3 
0.6168 
0.7999 

0.5093 0.6737 0.6737 0.4461 -0.1046 
-0.6168 0.4356 -0.4356 0.0 0.0 

0.7999 0.9023 0.8023 0;4461 .0.1046" 

0.6705 -0.1441 
0.0 0.0 
0.6705 I^ 0.1441. 

Closed-loop KBF Eigenvalues, Flight Condition 14 

0.2369 0.9951 0.5971 0.59?1 0.8538 0.0351 1.0000 0.0188 
0.0 0.0 0.1198 -0.1198 0.0 0.0 0.0 0.0 
0.2369 0.3951 0.6090 0.6090 0.8838 0.0351 1 .oooo 0.0188 

Closed-loop Control Eigenvalues, Flight Condition 15 

0.7050 0.7050 0.7680 0.7680 0.6027 -0.0924 -0.0232 0.8236 
0.4633 -0.4633 0.3027 -0.3027 0.0 0.0 0.0 0.0 

. 0.8436 0.8436 0.8255 0.8255 0.6027 0.0924 0.0232 0.8236 

Closed-loop KBF Eigenvalues, Flight Condition 15 

0.6008 
0.1632 
0.6226 

0.6008 0.8192 0.9681 0.9949 0.0351 1.0000 
-0.1632 0.0 0.0 0.0 0.0 0.0 

0.6226 0.8192 0.9681 0.9949 -' 0.0351 ~-1~.oooo 

0.0188 
0.0 
0.0188 

Lateral System 

Closed-loop Control Eigenvalues, Flight Condition 14 

0.8830 
0.0 
.0.8830 

1.0000 
0.0 
1.0000 

0.9345 
0.0 
0.9345 

1...0000 
0.0 
1 ioooo 



Lateral System 

0.6792 0.6792 0.7323 0.7323 0.5748 -0.1134 -0.0430 
0.4874 -0,4874 0.3554 -0.3554 0.0 0.0 0.0 
0.8360 0.8360 0.8139 0.8139 0.5748 0.1134 0.0430 

0.5699 0.5699 0.9935 0.9570 0.8207 0.0351 1.0000 
0.1437 -0.1437 0.0 0.0 0.0 0.0 0.0 
0.5877 0.5877 0.9935 0.9570 0.8207 0.0351 1 .oooo 

0.6513 0.6513 0.7039 0.7039 0.5400 -0.1233 0.7966 
O.U960 -0.4960 0.4009 -0.4009 0.0 0.0 0.0 
0.8186 0.8186 0.8101 0.8101 0.5400 0.1233 0.7966 

0.5377 0.5377 0.9961 0.9383 0.8083 0.0351 
0.1181 -0.1181 0.0 0.0 0.0 0.0 
0.5505 c.5505 0.9961 0.9383 0.8083 0.0351 
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Closed-loop KBF Eigenvalues, Flight Condition 16 

Closed-loop Control Eigenvalues, Flight Condition 17 

Closed-loop KBF Eigenvalues, Flight Condition 17 

1.0000 
0.0 

0.8086 
0.0 
0.8086 

0.0188 
0.0 
0.0188 

-0.0595 
0.0 
0.0595 

0.0188 
0.0 

:1.0000 0.0188~ 

0.9255 
0.0 
,o. 9255 

1.0000 
0.0 
1.0000 

0.9166 
0.0 
0.9166 

1.0000 
0.0 
1.0000 



Lateral System 

Closed-loop Control Eigenvalues, Flight Condition 18 

0.6446 0.6446 0.7220 0.7220 0.5554 -0.0885 0.7732 -0.0569 0,8903 
0.4984 -0.4984 0.4102 -0.4102 0.0 0.0 0.0 0.0 0.0 
0.8148 0.8148 0.8304 0.8304 0.5554 0.0885 0.7732 0.0569 0.8903 

Closed-loop ICBF Eigenvalues, Flight Condition 18 

0.4968 0.4968 0.7916 0.9924 0.9048 0.0351 1.0000 0.0188 1.0000 
0.0924 -0.0924 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.5053 0.5053 0.7916 0.9924 0.9048 0.0351 1.0000 0.0188 1 .oooo 

Closed-loop Control Eigenvalues, Flight Condition 19 

0.6299 0.6299 0.7280 0.7280 0.5531 -0.0816 -0.0816 0.7457 0.8733 
0.5254 -0.5254 0.3900 -0.3900 0.0 0.0118 -0.0118 0.0 0.0 
0.8203 0.8203 0.8259 0.8259 0.5531 0.0825 0.0825 0.7457 0.8733 

Closed-loop KBF Eigenvalues, Flight Condition 19 

0.4732 0.4732 0.9936 0.8844 0.7830 0.0351 1.0000 0.0188 1 .oooo 
0.1051 -0.1051 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.4848 0.4848 0.9936 0.8844 0.7830 0.0351 1 .oooo 0.0188 1.0000 



Lateral System 

Closed-loop Control Eigenvalues, Flight Condition 20 

-0.1173 -0.0702 0.6256 0.6256 0.7317 0.7317 0.5535 0.7142 0.8565 
0.0 0.0 0.5466 -0.5466 0.3749 -0.3749 0.0 0.0 0.0 
0.1173 0.0702 0.8307 0.8307 0.8222 0.8222 0.5535 0.7142 0.8565 

Closed-loop KBF Eigenvalues, Flight Condition 20 

0.4688 0.4688 0.9927 0.8646 0.7828 0.0351 1.0000 0.0188 1.0000 
0.0764 -0.0764 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.4750 0.4750 0.9927 0.8646 0.7828 0.0351 1.0000 0.0188 1.0000 
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APPENDIX M 

Sampled-Data Second Order High-Pass Filters 

The desired transfer function of a second-order high-pass filter is 

given by 

H(s) = S2 

(s+aj2 
(M.1) 

where a is the desired break-frequency. A simple two-state-variable model 

is given by 

($ = (I: 3::) + (::)” 
y = x1 + x2 + Ll 

The transfer function H(s) is given by 

H(s) = $+ = & 

04.2) 

(M.3) 

(M.4) 

Using the discretizing methods described in Appendix F, one obtains 

the following discrete-time realization for a sampling period of S lof a 

second: 

Y (t+11 = xl(t+l) + u(t+l) + x2k+l) 

(M.5) 

(~.6) 
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a -- 
where 

8 
ad = e 

a. -- 
b 8" 8 c-e 

and a is the break frequency in radians. 

,04.7) 

04.8) 
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